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Samenvatting

N DIT PROEFSCHRIFT WORDEN benadermethoden geintroduceerd voor
I het gebruik in lerende regeltechniek. Benadermethoden zoeken een
relatie tussen in- en uitgang aan de hand van aangeboden data-punten.
Twee verschillende, maar sterk gerelateerde methoden passeren de re-
vue, namelijk de ‘key sample machine’ en de ‘recursive key sample ma-
chine.” De eerste methode is voor off-line benaderingen, waarbij alle
data tegelijk wordt aangeboden. De tweede methode is voor on-line
benaderingen, waarbij de data-punten puntsgewijs worden gepresen-
teerd. De benadermethoden bepalen zowel de structuur als de parame-
ters van de relatie.

Beide benadermethoden representeren de relatie in de data met een
(beperkt) aantal van de data-punten zelf, de zogenaamde sleutelpunten
(Eng.: ‘key samples’). Doordat de relatie wordt gevormd door een
aantal data-punten, en dat niet noodzakelijkerwijs de ingangsruimte in
kleinere ruimtes wordt opgesplitst, heeft het aantal ingangen weinig
invloed op de kwaliteit van de benadering. Tevens is het door het
toevoegen en verwijderen van sleutelpunten mogelijk om de structuur,
dat wil zeggen de vorm, van de relatie aan te passen.

De benaderingsmethoden bevatten een selectiemechanisme dat sleu-
telpunten toevoegt, en daarmee het aantal te benaderen relaties uit-
breidt, totdat het onwaarschijnlijk is dat deze verdere uitbreiding eni-
ge relevantie heeft. Om deze onwaarschijnlijkheid te bepalen, wordt de
kwaliteit van de data gebruikt, waardoor een nauwkeurige benadering
gevonden wordt als de data dit toelaat, en een grove benadering als de
data dit dicteert. Door toepassen van dit selectiemechanisme is het niet
waarschijnlijk dat ruis wordt benaderd.

Een uitgebreide evaluatie en een vergelijking met andere benader-
methoden laat zien dat een goede benadering van de relatie wordt ge-
vonden. Voor deze benadering zijn in het algemeen minder parame-
ters nodig dan de andere methoden nodig hebben. De geringe rekentijd
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maakt het mogelijk om de geintroduceerde methoden te gebruiken in
lerende regeltechniek.

Een set van experimenten is uitgevoerd om de methoden te testen
voor het doel waarvoor ze zijn ontworpen. Een verbeterd ‘Learning
FeedForward Control’ regelschema is gebruikt in de experimenten. De
experimenten tonen aan dat de benadermethoden, zowel off-line als on-
line, in staat zijn om de volgfout van een mechanische opstelling signi-
ficant te verbeteren. De benadermethoden zijn met succes getest in de
experimenten met negen ingangen voor de benadermethoden.



Summary

WO FUNCTION APPROXIMATORS are introduced in this thesis for use
T in learning control. These function approximators identify a rela-
tion between input and output based on samples. Two different, but
closely related function approximators are introduced: the key sample
machine and the recursive key sample machine. The first arrives at an
approximation by processing all the data as a batch, while the second
approximator arrives at an approximation by processing one sample a
time. Both methods alter the structure and the parameters of the rela-
tion.

The function approximators represent the relation in the data with
a (limited) subset of the training samples, the key samples. As the
relation is formed by a subset of the training samples, the input space
is not necessarily divided into regions. Therefore, the dimension of the
input space has little influence on the accuracy of the approximation.
Furthermore, by adding or removing key samples, it is possible to alter
the structure, i.e. the form, of the relation.

Key samples are included, and with them the number of possible
relations is extended, until it is improbable that this extension has any
relevance. The quality of the data is used for calculation of the relevance.
As a result of this relevance test, the approximation is accurate if the
quality of the data allows it, or the approximation is rough, if the quality
of the data dictates this. The selection mechanism prevents the current
realisation of the noise from being fitted.

An extensive evaluation and a comparison with other approximators
shows that a good approximation is found. In general, fewer parameters
are required than other methods need. The limited computational load
makes the methods applicable for learning control.

A set of experiments is conducted to test the approximators for the
purpose they are designed for. An improved Learning FeedForward
Control scheme is used in these experiments. The experiments show
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that the (recursive) key sample machine is able to significantly reduce
the tracking error of a mechanical setup, off-line and on-line. The ap-
proximators were successfully tested with nine inputs.
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Introduction

HE FUSION OF CONTROL engineering and mechanical engineering re-
T sults in the mechatronic approach to system development. In mecha-
tronics, a system is designed as a whole, and not in separate blocks.
The result of this approach is the development of inexpensive, high-
performing systems (Van Amerongen, 2003).

An example of this approach in consumer electronics is the deskjet
printer (Furman, Pinkernell, and Elgee, 1997). In a deskjet printer, a
printer head moves over the paper driven by a belt to deliver ink where
it is required. The belt in its turn is driven by a motor. Since the printing
of digital photos becomes more and more popular, the motion of the
printer head has to be precise to get sharp print-outs. On the other hand,
the prints should not cost too much, or the consumer is not willing to
buy the printer.

To satisfy these contradicting requirements, the design of the move-
ment of the printer head should be a symbiosis of mechanical construc-
tion and control engineering. In that way, a construction is made that
can be controlled with the specified precision, without wasting material
or development time.

The control of the printer head is based on comparing the actual po-
sition of the printer head with the position desired. The difference be-
tween these positions, the error, is used to correct the actual position.
This is called feedback control. Feedback control reacts to the error,
while this error in itself is unwanted. A feedforward controller can be
added to this scheme that responds to changes in the motion desired.
When the desired printing head position starts to change, a force can be
applied by the motor that moves the belt, before an error is introduced.
The force that is necessary to steer the printing head with the correct
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2 CHAPTER 1. INTRODUCTION

response is determined by a model. This model calculates the motion
of the printer head as a result of some motor force. Incorporating a
feedforward controller into the control scheme decreases the tracking
error (Astrém and Wittenmark, 1997).

Instead of increasing the tracking performance of the plant by feed-
forward, the feedforward controller can be used to keep the same track-
ing performance, with a less costly construction. One can think of mo-
tors with a larger force ripple or pulleys that are not exactly concentric.
This approach, for a linear motor, is followed in De Kruif and De Vries
(2002a).

A model of the plant is necessary to construct a feedforward con-
troller. This model can be based on the physical interaction of the el-
ements, or based on measurements. For a good feedforward signal,
the non-linearities of the plant should be incorporated into this model.
Since all printers are different, the feedforward controller has to be re-
designed for each printer. This is a time-consuming task, and is there-
fore undesired. Furthermore, the plant might change in the course of
time, e.g. because the ink-level in the printer head drops or the printer
heats up, which requires adaptations to the feedforward controller.

Instead of identifying the plant with its non-linearities beforehand
and build a feedforward controller for it, it would be advantageous to
identify the plant while in operation and adapt the feedforward signal
accordingly. This approach is used in several learning control schemes
(Arimoto, Kawamura, and Miyazaki, 1984; De Kruif and De Vries, 2001b;
Han, Kim, and Ha, 1998; Horowitz, 1994; Kawato, Furukawa, and Su-
zuki, 1987; Longman, 2000; Moore, 1992; Nergaard, Ravn, Poulsen, and
Hansen, 2000; Velthuis, 2000). To some extent, these approaches can
manage deviances between the real plant and the model and compen-
sate for them while the plant is in operation.

1.1 Motivation

A well-known learning control method is Iterative Learning Control
(1ILC) (Arimoto et al., 1984; Gorinevsky and Vukovich, 2001; Gunnars-
son and Norrlof, 2001; Han et al., 1998; Longman, 1998, 2000; Moore,
1992; Verwoerd, De Vries, and Meinsma, 2002).

ILC calculates a feedforward signal for a repetitive task that starts
each run in the same state. The ILC scheme is illustrated in figure 1.1.
Due to the repetitiveness of the task, disturbances that originate from
the plant, like friction in motors, will introduce the same error each run.
A feedforward signal as a function of the task-time can be calculated to



1.1. MOTIVATION 3

L 0O

Q - Q
U k41

+_ | €k uf-{-'k + Yk

’

— C ~O— P 1

Figure 1.1: ILC scheme

compensate for these reoccurring errors. In this figure, C is a controller,
P is a plant, L an (anti-causal) filter that calculates the feedforward signal
to compensate for the remaining error and Q a low-pass filter to coun-
teract modelling errors and noise. Returning to the printer example for
this control scheme: if someone always prints the same photo of his
wife, she is printed with higher precision after each try. This is because
the tracking errors are reduced after each print by the adapting feedfor-
ward signal.

Because the feedforward signal is learnt as a function of the task-
time, the ILC-scheme can only be applied if the task is repetitive. The
feedforward signal learns that it has to apply some extra force at a cer-
tain time, but it does not relate this force to e.g. the friction. The Learning
FeedForward Control (LEFC) scheme, however, learns the feedforward
signal as a function of the states. Because the effects that require com-
pensation also depend on these states, this feedforward signal can com-
pensate for these effects, independent of the motion (De Vries, Velthuis, and
Idema, 2001; Otten, De Vries, Van Amerongen, Rankers, and Gaal, 1997;
Starrenburg, Van Luenen, Oelen, and Van Amerongen, 1996; Velthuis,
2000; Velthuis, De Vries, Vrielink, Wierda, and Borghuis, 1998). This
may increase the print quality of all the photos, convenient if one also
want to print birds. The effects the LFFC scheme compensates for, are
state dependent effects; e.g. the LFFC scheme learns the friction as a func-
tion of the velocity and uses this relation to compensate for the error
due to the friction. The assumed plant’s model structure with the state
dependent effects f(x) is illustrated in figure 1.2(a). The forward path
only contains integrators. The state dependent effects are assumed to be
unknown. The purpose of LFEC is to approximate f(x) as a function of
x, the states of the plant, and then use it to cancel the signal, disturbing
the input of the plant, d.

However, the states x are generally not available. To overcome this,
LFFC bases its prediction on the reference signal and its derivatives,
which makes it a feedforward controller, see figure 1.2(b). LFF is the
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Figure 1.2: LFFC setting and the model of the plant

learning feedforward controller containing the approximation of f(x).
The reference signals are easily accessible and noise free. The use of
f(r) instead of f(x) assumes that their difference is small. If it would be
large, the approximation cannot be used in the feedforward controller.
This assumption holds if the state dependent effects are rather smooth
and the motion desired is followed close enough by the feedback system
alone. A complementary advantage of making it a feedforward scheme,
is that the stability issue is less severe.

In order to approximate the state dependent function, some kind of
function approximator is required. In previous work on LFFC, the used
function approximator was a B-Spline Network (BSN) (Velthuis, 2000).
This is a function approximator that consists of a set of basis functions of
which only a small number has to be evaluated to calculate the output.
The basis functions are active only in a specific region in the input space
and do not contribute to the output of the approximator outside this
region. The activation functions for ten B-spline functions are shown in
figure 1.3. The activation of one of them is highlighted. The BSN will
be treated in more depth in chapter 3. The output of a BSN is the sum
of all the activation functions for the specific input, multiplied by their
corresponding weight.

To divide the one-dimensional input space of figure 1.3, ten B-splines
are used. If a two-dimensional space has to be covered with a simi-
lar distribution, 10 x 10 = 100 splines are required. The number of
splines, and therefore the number of weights, grows exponentially with
the input dimension. This results in large memory requirements, dif-
ficult training and a bad generalisation, and is known as the curse of
dimensionality (Brown and Harris, 1994; De Vries et al., 2001). Due to
this curse, the number of inputs is in practice limited to circa two. So,
when the state dependent effects depend on more than two states, com-
pensation by a BSN-based method become a problem.
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Figure 1.3: A set of B-splines on the input space

Alternative function approximators can be used to find the relation
in a learning control scheme such as LFFC. Numerous function approx-
imators can be found in the field of statistical learning theory (Vapnik,
1999, 2000), regression (Draper and Smith, 1998; Kleinbaum, Kupper,
and Muller, 1987) and neural networks (Haykin, 1994; Zurada, 1992).
However, these methods have not been designed to be embedded in a
control system and hence might have characteristics that are unfavour-
able in that setting.

1.2 Problem definition

Because the function approximator is a part of the learning controller,
the properties of the approximator will show in the behaviour of the
learning controller; a learning controller with a BSN cannot be used if the
effect that should be compensated for, depends on many inputs. When-
ever this approximator will be used in another learning scheme, the
same problem will arise. To avoid undesired behaviour of the complete
setting, the characteristics of the function approximator should comply
with the control scheme. This motivates the following problem defini-
tion:

Problem definition:

Find a function approximator that can be used in a learning
control setting.

Before a function approximator is looked for that can be used in a learn-
ing control setting, one should specify what conditions the approxima-
tor should fulfil so that it can be used. This will be the first sub-problem
that has to be solved.
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Sub-problem 1:

Determine the conditions for a function approximator to be
applicable in a learning control setting.

With the resulting set of conditions, a function approximator can be
tested as to its applicability in a learning control setting.

Two situations are investigated in this thesis; in the first situation, all
the data is present in a batch of samples. These samples are obtained in
a separate training phase. In the second situation the data is present as
a stream of samples. After each sample, the approximation needs to be
updated. Because of these two situations, the problem definition is split
into two parts:

Sub-problem 2:

Find a function approximator, or two separate function ap-
proximators, that comply with the conditions specified for a
learning control setting and that can handle:

2a) a batch of data,
2b) a stream of data.

Although the function approximator is developed for a general learning
control setting, the LFFC case is the only case taken into consideration.
This is done because the LFFC would exhibit problems if the function ap-
proximator did not function as required, just as other learning schemes
would do. Furthermore, the LFFC setting calculates a feedforward signal
for the current reference signal by means of this approximator. Because
the feedforward controller is located in the feedforward path, instability
can only occur if the transfer function of the LFFC becomes unbounded.
This can easily be checked. So, from a stability point of view, LFFC is an
attractive scheme. The last reason is that the method has been shown
to work well in real-life setups (De Vries et al., 2001; Otten et al., 1997;
Starrenburg et al., 1996; Velthuis, 2000; Velthuis et al., 1998).

1.3 Application

The applicability of the function approximator in a LFFC setting is tested
on a Tripod, a pick-and-place machine. A photo and a schematic view
of this setup are given in figure 1.4. This setup consists of three linear
motors that can move up and down. A pair of rods is connected to
each linear motor, and the other side of these rods to the platform at
the top. Due to the constrained movements of the rods, the platform
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cannot rotate but only translate. The constraints on the rods make the
rods form a parallelogram. This is illustrated in figure 1.5. The position
of the platform is determined by the positions of the three linear motors.
Only the position of the three linear motors is measured.

The Tripod is incorporated in a LFFC setting, see figure 1.2(b). The
reference generator generates nine signals: position, velocity and ac-
celeration for each of the three motors. The three forces to reduce the
position error are calculated by the feedback controller. A feedforward
signal is added to each of these three forces. These three feedforward
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signals are calculated and learnt independently of each other. Each feed-
forward signal is calculated on the basis of (a subset of) the nine refer-
ence signals. After learning, the motors should be mainly controlled by
the feedforward controllers. The outputs of the Tripod are the positions
of the three motors. The feedforward signal is learned from the filtered
error signal. This will be further dealt with in chapter 5.

The function approximator used in a learning control setting is tested
on the Tripod. This application is chosen because of the following prop-
erties:

Motor characteristics: The motion of each individual linear motor is in-
fluenced by friction and cogging (Gieras and Piech, 2000). These
state dependent effects act on the input of the motor that gener-
ates these effects; the cogging of motor number one will only in-
fluence motor number one. The cogging and friction of the motors
are observable and can be compensated for by a learning feedfor-
ward controller. Apart from these effects, the (unknown) mass can
be compensated for. Strictly speaking, the unknown mass is not a
state dependent effect, because it acts as a multiplication factor in
the forward path of figure 1.2(a). However, if the rate of the first
integrator is included as ‘state’, so ¥ of the model figure 1.2(a), the
multiplication factor can be interpreted as a state dependent effect.
This factor is determined by the algebraic loop form %; to f(x) and
back again. The inclusion of the first rate as ‘state’ is maintained
throughout this thesis.

The presence of these effects makes it attractive to use a learning
controller.

Dynamic coupling: The motion of each motor will exert a force on the
other motors due to the coupling via the platform. The effect of this
force on a motor, can only be compensated for by the correspond-
ing feedforward controller, if the motions of the other motors are
known. This makes it necessary to have a feedforward controller
with a high input dimension. The high input dimension was the
bottleneck in previous research and with this coupling, it is tested if
an approximator can handle high-dimensional input spaces.

Flexible number of inputs: The learning feedforward controller for each
motor requires the reference signals of the other motors as inputs
to compensate for the dynamic coupling. If a motor does not make
a motion, it will not influence the other motors and therefore the
reference signals of this motor are not required in the learning feed-
forward controllers of the other two motors. Consequently, these
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controllers require only six inputs instead of the complete set of nine
inputs. If two motors stand still, the learning feedforward controller
only has to know the motion of its corresponding motor, because
there is no dynamic coupling of the other motors. This results in
three inputs.

So, by allowing one, two or three motors to move, the feedfor-
ward controllers require three, six or nine inputs. This characteristic
can be used to test the sensitivity of the approximator to the number
of inputs.

Limited stiffness: The stiffness of the construction is limited. Although
the effect of limited stiffness on the learning controller is not a topic
of research in this thesis, it will always be there, and it is therefore
interesting to see its effect.

1.4 Data sets

Examples are included throughout this thesis to exemplify the ideas of
the function approximators. Because function approximation concerns
itself with finding a relation within a set of samples, two data sets con-
taining samples are constructed to be used.

Data set 1 (Computer generated)
The first data set is generated by a computer, using:

. 1
y= Sm(x——i—v) + e (1.1)

This function, with ¢ = 0, is shown in figure 1.6. The value of v is
set equal to 0.05 unless stated otherwise. x is uniformly distributed be-
tween zero and one. & denotes noise with a zero-mean Gaussian dis-
tribution. The variance of this noise, as well as the number of training
samples contained in the data set, will be changed throughout the the-
sis and will be given when used. A validation set is constructed by the
same equation.

This function is used to generate data because of the difference in the
absolute value of its derivative. It starts fluctuating fast while for larger
values of x the fluctuation becomes very slow. This makes it possible to
test whether the function approximator can handle different fluctuation
speeds or not. This is furthermore interesting because the approximator
should approximate the fast fluctuation function, while it should not fit
the current realisation of the noise. Although this example is computer
generated, it is connected to real-life applications, because in real-life it
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Figure 1.6: True function underlying data for data set 1

Figure 1.7: Magnets on the stator of a linear motor

is unknown whether, where and how wildly the function underlying
the samples fluctuates. &

Data set 2 (Cogging force)

The second data set represents the cogging force as a function of the
position, present in a linear motor. These measurements are made at a
motor available at the Control Engineering laboratory of the University
of Twente. The function approximation has to estimate the cogging force
based on the position.

Cogging is caused by the attraction between the permanent magnets
of the fixed part and the iron in the coils of the moving part (Gieras and
Piech, 2000). Because the permanent magnets are placed periodically,
the cogging force is periodic. A photo of the magnets placed on the
stator of the linear motor is shown in figure 1.7. The data set of samples
which relates the cogging force to the position, is obtained by filtering
the error signal of the controlled linear motor. See figure 1.8(a).

Samples obtained in this way and which are used to estimate the re-
lation, are shown in figure 1.8(b). The translator moved forth and back
again to obtain these samples. The samples representing the cogging
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Figure 1.8: Estimation of the cogging force with the values obtained

force are ambiguous, as can be seen from the position at 0.19 [m]. This
ambiguous data is not removed by means of data pre-processing, be-
cause in a learning control setting, something alike may occur. The dif-
ferent approximators can be evaluated with respect to this set on how
well they handle unknown noise levels and ambiguities in the data.

This data set contains 20000 data samples, 2000 of which will be
used for validation purposes. &

1.5 Outline

In order to develop a function approximator that can handle a batch of
data as well a continuous data stream, this thesis is structured as fol-
lows:

Chapter 2, Background: Before a review of function approximators can
be made, or before an approximator can be constructed with the
specific goal of usage in control, some background information has
to be given. First, the setting will be dealt with from which the
function approximator obtains its training data. This will cause the
approximation problem to be formulated as optimisation problem.
Different variants of this optimisation problem, and techniques to
solve the problems, will be discussed.

The conditions put to the function approximator are treated in
this chapter, so that in the following chapters these conditions can
be used for evaluation purposes.
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Chapter 3, Off-line function approximation: This chapter will treat the sit-
uation in which the data is present as a batch. A set of off-line func-
tion approximators will be investigated and evaluated. Based on
this evaluation, the desired properties are combined to form a func-
tion approximator specifically for our goals. The performance of
these approximators will be compared on the data sets noted be-
fore.

Chapter 4, On-line function approximation: An on-line function approxi-
mator is constructed based on the outcome of the off-line function
approximator. A function approximator is described that is capable
of handling a stream of data while it can still adapt its structure.
Previously presented information is not omitted when the structure
is adapted.

The approximator is evaluated to test its properties. Also a com-
parison with another approximator that alters its own structure on-
line is made.

Chapter 5, Experiments: In this chapter the off- and on-line function ap-
proximator are tested in a phase-corrected Learning FeedForward
Control setting. The control setting and practical considerations of
the function approximator are dealt with. The experiments are done
with the Tripod as plant in a learning control scheme. The results
are shown for different experiments.

Chapter 6, Discussion: The last chapter will review the ideas presented
in this thesis and relate these to the problem definition. Further-
more, some directions for future work are hinted at.
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Background

EFORE A REVIEW of function approximators can be made, or before
B an approximator can be constructed especially for learning control,
some background has to be given. This chapter treats the background of
function approximation, and additionally, it will serve as a connection
between the actual problem and the theory in subsequent chapters.

In order to make the problem clear, we start with the setting in which
the function approximator has to operate. This setting indicates how
the training data is generated. Based on this setting, a minimisation
problem is formulated for the function approximator.

Different function approximators use different techniques to approx-
imate the data. The characterisation of the different methods will be the
subject of section 2.2, so as to create a handle by which these can be
discussed. To treat the specific properties that are required for an ap-
proximator to be applicable in a control setting, section 2.3 is included.

2.1 Approximation problem

2.1.1 Approximation setting

In figure 1.8(b) samples of the cogging force are plotted as a function of
the position. It is known from physics, that the cogging force depends
on the position. When the position is not available for the prediction
of the cogging force, no sensible prediction can be made. If a learning
controller has to counteract some effect, it is important that the correct
inputs are selected so as to predict the behaviour of the effect. However,
the selection of the inputs is not within the scope of this thesis, and to

13
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(a) The learning problem, (b) Obtaining samples to approx-
based on figure 1.1 of imate the cogging set in the
(Vapnik, 2000) form of (a)

Figure 2.1: Learning setting, see also table 2.1

avoid situations in which inputs are missing, the following assumption
is made.

Assumption 1 (All inputs present) For a given approximation problem, the
following holds:

1a) The function approximator is supplied with all the relevant inputs.
1b) In addition to these inputs, irrelevant inputs might be present.

The learning scheme that is associated with this assumption, is shown
in figure 2.1(a), which is based on figure 1.1 of (Vapnik, 2000). The upper
part of the figure is the sample generating part, while the lower part of
the figure is the function approximating part.

In this figure, G is a generator that generates vectors x and x,. Of
these variables, only x acts as an input to the supervisor. The super-
visor, S, assigns a value y to each input x. The output of the supervi-
sor is independent of the variable x,. However, x, is presented as in-
put to the function approximator, FA. This variable is included into the
scheme, because it is assumed that irrelevant inputs can be presented to
the function approximator. Apart from the irrelevant inputs, the func-
tion approximator is supplied with x, which contains all the relevant
inputs. The function approximator has to select the best function from a
set of possible functions to predict the behaviour of the supervisor. Af-
ter the selection, the function approximator can be used to predict the
behaviour of the supervisor for inputs unencountered. The approxima-
tion of the true response y is indicated by 7. y is often referred to as the
target for learning and, without loss of generality, it is assumed that y is
a scalar.



2.1. APPROXIMATION PROBLEM 15

Table 2.1: Relation between elements of the problem setting in fig-
ure 2.1(b) and figure 1.8(b)

Symbol Description

S controlled linear motor including data pro-
cessing that calculates the cogging force

G path generator

X position desired

Xu velocity and acceleration desired

Yy estimate of cogging force, d

7 prediction of cogging force

Example 2.1

In figure 2.1(b) the scheme that was used to obtain samples of the cogging force
is shown in the learning setting of figure 2.1(a). The relation between the vari-
ables used in the learning setting and the variables used in the setting of fig-
ure 1.8(b) are given in table 2.1.

The path generator R, generates samples for position, velocity and acceler-
ation which the controlled linear motor should follow. However, the only vari-
able that is necessary to predict the cogging is the position. So, this position is
indicated by x in the learning setting. The cogging should be predicted and is
therefore the target y. The true cogging force is unmeasurable, so the estimated
cogging, d of figure 1.8(b) is used instead as the target. If other variables are fed
to the function approximator as input, e.g. velocity and acceleration, which are
not necessary for the prediction of the cogging, then these are contained in xy. &

An important aspect concerns the probability distribution by which
the generator generates the samples. E.g. some areas of the state space of
the Tripod are more likely to be visited than other areas; the middle part
of the stators of the motors are more likely to be visited than the outer
ends. To incorporate this, x and x,, are generated with a probability dis-
tribution P(x) and P(xy) respectively. A similar construction is used
for the output of the supervisor, because uncertainties like noise corrupt
it. The output of the supervisor is modelled as a conditional probabil-
ity distribution depending on its input: P(y|x). The distributions are
assumed to be independently and identically distributed (i.i.d.).

The description of the conditional probability is rather broad and
for reasons of simplicity, it is assumed that the noise is additive. The
learning setting including this assumption is shown in figure 2.2. The
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Figure 2.2: The learning problem with additive noise

new block name F is used to indicate that this represents a deterministic
function with true output y;. This noise-free output cannot be measured.

Assumption 2 (Additive noise) The noise that acts on the true output y;,
is additive, independent of previous noise samples and is always generated by
the same distribution.

Throughout this thesis the terms function approximation and learn-
ing mechanism are used interchangeable. The function selected by these
mechanisms is called the approximation or the estimate.

2.1.2 Minimisation problem

The goal of the function approximator is to select the ‘best” function out
of a set of functions to approximate the true response of the supervi-
sor. In order to select the best function, a measure should be available
to indicate whether one function is better than an other. Based on the
Bayesian tradition, the measure is chosen to be the risk. The risk is de-
fined as the expected cost:

R(b) = [~ C(305b),y) dP(xxuy). @1)

—00

In this equation b is a parameter vector that is tuned to minimise the
expected cost. The cost function, C(7(x;b),y), indicates the cost that is
associated by selecting  instead of y. If the real economic cost is known,
this cost can be used. However, this cost is often unknown and in the
next section the question how the cost function can be chosen, based on
the noise distribution, is answered.

The expectation of the cost is taken over the probability of the oc-
currence of a training sample, P(x, Xy, ). Therefore, occurrences more
likely to happen are predicted better. This is a useful property for learn-
ing control, because it means that the learning mechanism will learn bet-
ter in areas more often visited. But, the probability distribution P(x, xy, ¥)
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is rarely known, and when it is not known, the risk cannot be min-
imised. To overcome this problem, the risk can be replaced by the em-
pirical risk, i.e. the sum of the cost for all the samples in a data set:

1
N :
1

™M=

Remp(b) = C(?(Xi,'b),yi). (2.2)

1

In this, N is the number of samples, y; the i" output sample of the su-
pervisor and x; the i" input sample to the supervisor. The prediction
of the supervisor’s behaviour comes down to finding the function that
best approximates the outputs based on the inputs in the collection of
samples called the data set. The integral over the combined probabil-
ity in (2.1) can be approximated by the summation of the samples in
(2.2), because a high probability is likely to result in more occurrences of
samples in that area. Conditions for the set of functions so that the min-
imisation of the empirical risk converges towards the minimisation of
the actual risk are given in Vapnik (1999, 2000) and can be summarised
for the purposes of this thesis as: the set of functions considered in the
function approximation problem should be bounded.

2.1.3 Maximum Likelihood

The cost C(§(x;; b), y;) used in the (empirical) risk has not yet been spec-
ified. Fisher (1912) links the additive noise distribution to the cost func-
tion, so that the likelihood of the given observation is maximised. This
method is called the Maximum Likelihood (ML).

Maintaining the notation for the noise free output y; of figure 2.2 and
introducing y ; for the ih observation of this variable, the likelihood of
observation y; is given as the conditional probability density function
p(vilyti). Note that in the likelihood function p(y;|yt;), yi is known and
Vi is the variable, whereas this is just the other way around as one might
expect.

The maximum likelihood estimator tries to maximise the expression
p(vilyti) by varying v ;, thus looking for the most probable value for a
given set of observation. This can be written as:

§; = argmax p(y;lys,) - (2.3)
Yt,i

For a set of given observations the maximum likelihood is given as

N
§ = argmax [ T p(vilysi)- (2.4)
Y1+ YN i=1
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The value for which the argument of the maximisation problem is max-
imal, does not change by first applying the logarithm, because the log-
arithm is a monotonously increasing function. However, it will change
the product of (2.4) into a summation:

N
§y = argmax ) log(p(yily))- (2.5)
Yi1--YtN =1

This expression can be further simplified by using assumption 2 which
states that the noise is additive. Due to this additive property p(vi|yi;) =
pn(yi — yi;) in which the p;, indicates the noise probability density. This
yields:

N
y = argmax 2 log(pn (Vi — Yti))- (2.6)

Ye1--Yi,N =1

In this equation y;; is a set of individual estimates of the observations
that is varied. In the case of function approximation, we are not inter-
ested in a set of individual values that solve the maximisation problem,
but we are interested in a function that approximates the data. There-
fore, the set of points is replaced by a function with adjustable parame-
ters:

N
b= arg;nax Z log(pn(yi — 9(xi;b))). (2.7)
i=1

In this equation §(x;; b) is a function that approximates the individual
values of y;. b is a parameter vector that alters the approximation.
This equation can be related to the empirical risk in (2.2). It follows that
minimisation of the empirical risk with the cost function equated with
the negative of the logarithm of the noise distribution, is identical to
maximising the likelihood of the observations:

C(@(xi;b),yi) = —log(pn(yi — 9(xi;b))) =
minimising Remp = maximising the likelihood. (2.8)

Example 2.2 (Gaussian noise)
A well-known result is obtained if the additive noise is assumed to be zero-mean
Gaussian noise. The probability density of Gaussian noise is given as

2
pn(S) = 21 eXp(—z%) (2.9)

no?
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Table 2.2: Common loss functions and their corresponding additive
noise density, given in (Smola and Scholkopf, 1998)

loss function density model

e-insensitive  C(&) = [¢]e Pn(8) = 5 exp(—Ile)
Laplacian C(G) =gl pn(g) = 3 exp(—[¢])
Gaussian C(¢) = %CZ pn(8) = \/% exp (—¢?)
Polynomial  C(&) = 12P  pnl@) = srlysy exp (~12I7)

By equating the cost function with the noise distribution’s negative logarithm,
we obtain:

C(§) = —log(pn(S)) (2.10a)
N S ) o
= o) ra(en(-22)) it
:‘%+G%) (2.10d)
« 2. (2.10e)

In this equation c is some constant and ¢ = y; — 7(x;, b). So, (2.10) shows that a
quadratic cost function results in an ML estimate for Gaussian additive noise. @

A table of common cost functions and their corresponding additive
noise density is given in table 2.2. This table is copied from Smola and
Scholkopf (1998). The e-insensitive function used in the table, equals
zero when ¢ is smaller than €, and increases linearly when ¢ is larger
than e:

Mk={0 o< e 2.11)

|&| — € otherwise

The e-insensitive function is used in the Support Vector Machine (SVM),
which will be treated in chapter 3.
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2.1.4 Maximum A Posterior

The maximum likelihood estimate is closely related to the Maximum A
Posterior estimation (MAP). The MAP estimate maximises the a posterior
probability density:

byar = argmapr (xi;b) |yi) - (2.12)
b
The following relation is found by applying Bayes’ theorem:

argmaxﬁp(y(x;b) lyi) = argmaxll—\]I Pil§(xb)) p(]}(x;b)). (2.13)
b i=1 b i=1 p(yi)

The p(j(x; b)) denotes the a-priori probability density of the approxi-
mations. If all approximations are equally likely, e.g. no a-priori knowl-
edge is present, (2.13) changes into:

argmapr x;b) |y;) = argmaxH Pily(xiib)) (2.14)
i=1 i=1 p(yl)

The maximisation of (2.14) is performed for b, and because p(y;) isi.i.d.,
the optimal value of b is not influenced by p(y;), reducing (2.14) to (2.3).
So, if all approximations are equally likely, the ML estimate is equal to
the MAP estimate.

2.1.5 Regularisation

The minimisation of the empirical risk might give rise to a problem
known as overfitting. Overfitting is the approximation of the realisa-
tion of the noise instead of the underlying function. The realisation of
the noise is approximated if the amount of data is too small compared
with the freedom of the approximator. The approximation predicts the
output at the given samples (nearly) flawless while it typically fluctu-
ates wildly in between these samples.

It is often known that these fluctuations of the approximation are
incorrect. A second term that represents a priori knowledge on the
function to approximate, can be included into the minimisation problem
to impose e.g. smoothness. This second term is called a regularisation
term. With this regularisation term, the new function to be minimised
is given as:

1

Remp (b) = N - (yA(Xi}b) +Yi) + ADJ(x;b). (2.15)

WMZ
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In this equation D is some user-defined, problem-dependent operator
on the approximation and A a positive regularisation parameter. The
value of A indicates the confidence in the a-priori knowledge. If it is set
to infinity, the samples do not have any influence, while setting it to zero
ignores all a-priori knowledge.

The regularisation term is closely related to the Bayesian theory as
shown in Poggio and Girosi (1989). Here, an informal presentation is
given to show the idea. As before, Bayes’ theorem states:

N
[ Trilo(xi;b)) p(9(xi; b HP (xi;b) i) p(yi)- (2.16)

i=1

The probability density of the approximation 7(x;; b) is given as:

p(#(xi;b)) = (#(xi; b)) (2.17)

This density can be used to indicate that smooth functions are more
likely to occur. Applying the logarithm to both sides yields:

Mz

N
Y log p(yilg(xi;b)) +
=

Og(P( (XZ/ )) =

M= L

N
log p(§(x;; b )Iyi)+;10gp<yi) (2.18)

I
—

The probability density of the approximation is equal for all the samples,
simplifying the second left-hand term. Furthermore, the assumption of
additive noise is included, which results in:

N
Zlogp 9(x;;b)) + Nlog ¢ (7 ZIng Vi)

Z

= ; log p(9(xi;b) lyi)  (2.19)

Maximising the right-hand side of this equation is the same as the max-
imisation problem of the MAP estimate (2.12). The last term of the left-
hand side can be omitted when maximising for b, because it is a constant
for all samples and independent of b. The first term on the left-hand side
equals the previous ML estimate (2.7). The second term on the left-hand
side denotes the a-priori knowledge on the approximation and can be
compared with the regularisation term of (2.15). Thus the MAP estimate
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Figure 2.3: Influence of Ridge regression

of the data with some prior knowledge on the likelihood of the approx-
imation is equal with the ML estimate plus a regularisation term.

Example 2.3 (Ridge regression)

A regularisation method that is often used is ridge regression (Hoerl and Ken-
nard, 1970). This method uses the two-norm of the parameter vector as regular-
isation term: Dfj(x; b) = bTb. The underlying a-priori knowledge if this norm is
minimised, is that the parameters are likely to be zero. Due to the samples in the
data set, this knowledge can be contradicted. However, the learning mechanism
tries to keep the parameters small.

The influence of ridge regression is illustrated in figure 2.3. The gray line is
the approximation without any form of regularisation. The sets of functions that
can be approximated by the approximators in (a) and (b) are equal. However,
how the set of function is formulated, is different; in (a) the parameters act on
the derivative of the approximation, while in (b) they act on the absolute value
of the approximation.

The consequence of minimising the parameters that act on the derivative in
conjunction with the summed squared error, is that a smoother approximation
is obtained. The corresponding disadvantage is that the fast fluctuations in the
data for x < 0.1 cannot be approximated well. If the parameters act on the abso-
lute value of the approximation, minimising the parameters will result in a too
small an approximate. So, the influence of ridge regression depends on how the
set of functions is constructed. &
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2.2 Characterisation of function approximators

In the previous section the general approximation problem setting was
stated as a minimisation problem. However, how we find an approxi-
mation was not mentioned. From the extensive literature in the field of
function approximation, it can be deduced that there are a lot of pos-
sibilities. In order to characterise function approximators so as to deal
with the great number of possibilities, several properties are examined.
These properties are:

Minimisation criterion: What is the criterion the function approximator
tries to minimise.

Set of functions: From what set of functions can the function approxi-
mator choose to minimise the above mentioned criterion.

Implementation: How does the function approximator find the correct
function from the set of functions.

2.2.1 Minimisation criterion

The function approximator uses the minimisation criterion to determine
whether one approximation is better than an other. A possible minimi-
sation criterion is given in (2.15), which is the summed cost of the sam-
ples plus some regularisation term. The chosen cost function and the
regularisation term, including the regularisation parameter A, will have
a significant influence on the final approximation that is obtained. In
this thesis, we will be confronted with the following cost functions:

e quadratic cost function,
e c-insensitive cost function.

The regularisation methods used are related to ridge regression. For
more information of the influence of the cost function on the final ap-
proximation, see Huber (1981). Hoerl and Kennard (1970); Poggio and
Girosi (1989, 1990); Tikhonov and Arsenin (1977) give more background
about regularisation.

2.2.2 Set of functions

The learning mechanism selects a function out of a set of possible func-
tions to approximate the data. Because the learning mechanism is lim-
ited to approximate the data by the functions out of this set, the set of
possible functions co-determines the outcome of the approximation.
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The set of functions is determined by the allowed range of the parame-
ters and the structure on which these parameters act. The structure can be
set beforehand and the learning mechanism has to tune the parameters
to find the best approximation. Or, the structure itself can be adapted
by the learning mechanism. In the second case, the learning mechanism
has to select a structure and suitable values for the parameters to come
to an approximation. A structure that is given beforehand and is unal-
terable during training, is called a rigid structure. A structure that can be
altered throughout the training, is called a flexible structure.

Rigid structure

The function’s structure is composed of elementary basis functions, in
which the elementary functions are shaped by the parameters. In the
case of a rigid structure, the composition of the elementary basis func-
tions is set beforehand; so, only the shape of the basis functions can be
altered by the learning mechanism.

Example 2.4

Assume we want to approximate some relation in the data by a fourth-order
polynomial. The set of functions from which the learning mechanism has to
select one is given as:

9 = by + byx 4 byx? 4 b3x® 4 byxt. (2.20)

The elementary functions of this structure are the powers of x. These are summed
to compose the structure. By altering the parameters bj, the shape — in this case
the amplitude — of the elementary functions is adapted. Throughout the train-
ing, only the parameters b; are altered due to the samples (x;,y;). ®

Flexible structure

When, next to the parameters, the structure is liable to adjustments, the
learning mechanism has to locate the correct parameters as well as the
correct structure.

Example 2.5 (Limited Gaussian functions)
Let us assume that we would like to approximate the data by a weighted sum
of Gaussian functions. The Gaussian function is given as:

filx) = ew(—%)- (2.21)

As to the example, the width o of this function is fixed. The centres, c;, are
selected to coincide with the inputs of the training data. Because the memory is
limited, we wish to select only 10 centres.
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The individual Gaussian functions with their centre on some training sam-
ple are the elementary functions of which the structure of possible functions is
composed. By means of trial and error, the learning mechanism selects ten of
these centres, i.e. it selects an appropriate structure. The parameters that have
to be given a value are the weights of the weighted sum.

Instead of searching for apt Gaussian functions on the training samples and
thus adapting the structure, the same set of functions can be approximated by
using ten Gaussian functions and use the centres as parameters that can be
tuned. The adaption of the structure is replaced by introducing extra param-
eters, thus obtaining a rigid structure. &

Because the same set of functions can be obtained by using a rigid
structure with some extra parameters as in a flexible structure, as shown
in example 2.5, the structure and the parameters cannot be defined in an
unequivocal way by the set of functions they span, and are merely de-
termined on how the problem is looked at. However, they can be defined
by how they act in the learning mechanism: adaptations of the structure
can only be done by including or removing terms, while parameters can
alter in a continuous fashion. This is summarised in the following two
definitions:

Definition 1 (Structure) The structure of a function is the composition of
elementary basis functions; adapting the structure can only be done by adding
or removing terms.

Definition 2 (Parameter) A parameter is a variable that shapes the elemen-
tary basis function of which the structure is composed; furthermore, a parame-
ter can be adapted by the learning mechanism.

2.2.3 Implementation

The optimal approximation is completely determined by the minimisa-
tion criterion and the set on which the minimisation is carried out. How
this approximation is found in the allowed set of functions should not
be of any consequence to the outcome; it merely indicates the search
process.

Nonetheless, this search process is an important property of the learn-
ing mechanism, because locating the best function is not straightfor-
ward, especially if the optimisation problem is non-convex (Boyd and
Vandenberghe, 2004). For this reason, an acceptable function found
quickly, can be more satisfactory than the best function found after a
long search.

We can look at the update algorithm contained in the learning mech-
anism to characterise the way in which the learning mechanism finds
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an approximation. We call those calculations an update step that are
required for a new estimate. If several iterations are required to obtain
a new update, e.g. due to some internal optimisation routine, this will
still be denoted as just one update step, because the intermediate results
are not considered estimates. We will differentiate between two classes
of updates: single step and recursive.

The first class uses all the data to come to an approximation in one
step. This method is used, e.g., by Ordinary Least Squares (OLS), which
calculates the parameter vector explicitly in one step by the use of the
normal equations, see, among others, (Bjorck, 1996). The Support Vector
Machine (SVM) can also be classified as an approximator that uses only
one update step. The SVM will be treated in the next chapter. To obtain
an approximation in the SVM setting, a convex optimisation problem
needs to be solved. This requires some iterations, but in between, no
new estimate is presented. These iterations are therefore not considered
update steps.

The second class consists of learning mechanisms that update their
approximation in successive steps, and so obtain an approximation in a
recursive fashion. A rather broad set of methods use such an update
scheme. It contains methods that incorporate explicitly all the infor-
mation of the previously presented samples, as well as methods that
incorporate none of the samples previously supplied explicitly for an
update. To incorporate information of previous samples for updating,
some kind of storage is required. This storage has to be updated in con-
junction with the approximation. A function approximator that uses all
the information of previously presented samples is the method of Re-
cursive Least Squares (RLS).

Whenever a new sample becomes available, it is incorporated into
the present approximation, resulting in an updated approximation. To
incorporate the sample in the new approximation without forgetting the
previous samples, the previous samples are stored in a correlation ma-
trix. This matrix is updated with every new sample.

A method that only uses the present sample without the explicit use
of previous samples is an Multilayer Perceptron neural network (MLP)
which uses the backpropagation rule to update its parameters (Haykin,
1994; Zurada, 1992). The gap between storing the information of all the
previous samples and storing no information at all, is filled by methods
that use some information of the previous samples. One can think of the
use of the momentum in the field of Artificial Neural Networks (ANN)
(Haykin, 1994; Zurada, 1992).
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Table 2.3: Properties of the recursive least squares method and the sup-

port vector machine

RLS

Minimisation criterion

YN (9(xi;b) — yi)* + AbTb

svM YN, [9(x;b) — il + AbTD

RLS

Set of structures
Rigid structure that has to be decided on beforehand

svM Flexible structure that depends on the data instead of

RLS

a predefined structure

Update step
— KxTxK
K:=K- 1+xKxT

b:=b+Kx'(y — xb)

SVM By use of convex optimisation

Example 2.6 (Comparison of two function approximators)
The properties treated above give us the tools to deal with the differences of the

vast

variety of function approximators. This can be illustrated by comparing

RLS and svM. Both methods will be treated in more detail hereafter, but by in-
vestigating the criterion, the set of functions and the update step, some idea can
be obtained of these methods. These characteristics are summarised in table 2.3.
Based on these, several observations can be made:

Due to the different cost functions both methods will solve a different prob-
lem. The quadratic cost function will give an ML estimation for Gaussian
noise, which makes it sensitive to outliers. The e-insensitive cost function
is less sensitive to outliers. However, it allows for small errors.

Due to the rigid structure of the RLS method, a-priori knowledge is required
to form this structure. If no a-priori knowledge is available, a general struc-
ture can be used.

The svM method uses a flexible structure. This allows for adaptation on
both parameters and structure, resulting in a broad set of functions that
can be approximated. The structure has to be determined together with the
parameters, which will result in a higher computational load.

The RLS method updates its prediction at every step while remembering
previous information. This makes it applicable for situations in which the
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data is received successively and an estimate is required at every step, like
in control or adaptive filters. The previous information is stored in the ma-
trix K and contains all the information necessary to update the solution in
such a way that the solution found is equal to the solution obtained when
all the samples were used.

o The calculations for the SVM have to be done in a batch. This makes it
applicable if all the data is present beforehand.

2.3 Conditions

The function approximator is embedded in a learning control setting.
When placed in a control setting, the prediction of the approximator is
injected into the controlled system as a signal. In the LFFC scheme this
signal acts as a feedforward control signal and should steer the plant
with the desired response. Because the approximator is included in the
system and it injects signals into it, conditions are imposed on its be-
haviour. The conditions for the approximator’s behaviour is the subject
of this section.

In Velthuis (2000) several requirements were formulated with re-
spect to function approximator. Notwithstanding that these conditions
were formulated for one individual scheme (LFFC), they do suggest that
several conditions should hold for a function approximator to be appli-
cable in any control scheme. Generalising from the above-mentioned
source, two main conditions can be formulated in which further sub-
conditions can be subsumed:

1) Real-time constraints: the approximator should be implementable in
an (embedded) computer operating real-time.

2) Generalisation ability: the approximator should give a meaningful
approximation for any relevant input, based on the samples sup-
plied before.

The first of these conditions originates from the limited resources avail-
able on a computer. Nowadays nearly all controllers are implemented
digitally and therefore the limitations of the available hardware should
be taken into account. This limits the computation time as well as the
amount of available memory the approximator may use. For the con-
dition on limited resources to hold, several subconditions have to hold.
These can be formulated as follows:
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la) The computation time of a prediction has to be smaller than the
sampling period; for the applications we are interested in, this is
approximately 1 [ms].

1b) The memory requirements of the approximator have to be limited.

The first of these conditions states that the computation time of the ap-
proximator should be less than a sample period. This is a necessary
condition, because in one sample period, additional calculations have
to be made.

If the update is done on-line, then the time allowed for the calcula-
tion of the update depends on the implementation of the control setting:
the first option is that the update is calculated in the real-time loop. The
calculations for the update have to be made within a sample period, to-
gether with the other calculations in the real-time loop. The second option
is to put the calculation of the update outside the real-time loop. This
allows for updates that need more calculation time than available in a
sample period. As long as the function approximator is processing a
sample, samples supplied newly will not be processed and are omitted.
The calculations are executed when the real-time loop does not require
processor time, and care should therefore be taken, that the function ap-
proximator gets enough calculation time from the processor to obtain
an adequate approximation for the learning controller.

Condition 2 states that the approximator should give meaningful
predictions based on the samples. The following sub-conditions stem
from this condition:

2a) The approximator should generalise well.
2b) The approximator should be able to cope with noisy training data.

2c) The approximator should be able to approximate functions with the
appropriate number of inputs.

Generalisation in subcondition 2a indicates that the outputs of newly
encountered samples are predicted well, and furthermore, that samples
that are more likely to occur should be predicted better. The same was
striven for by the minimisation of the risk function, repeated below:

R(b) = [~ C(g0b),y) dP(xxu,y) 1)

—00

Based on this minimisation criterion, generalisation is a rather straight-
forward term, indicating that samples taken with the probability dis-
tribution P(x, xy, y) will give a small cost on the average (White, 1989).
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However, one can only give a good prediction for an arbitrary input if
some a-priori knowledge on the relation is included. If no knowledge is
assumed on the relation, a prediction cannot be obtained for a new in-
put: all possible predictions are equally unlikely. An assumption that is
commonly made, is the assumption that the relation is smooth (Haykin,
1994; Poggio and Girosi, 1990). This assumption is also used throughout
this thesis.

Assumption 3 (Smoothness) The relation that is sought is smooth.

Condition 2b is of importance, because noise is inherently present.
Even with this noise the learning mechanism has to be able to find cor-
rect parameters, as well as a correct structure.

Conditions 2c¢ is included because the number of inputs can become
considerable. In previous work on LFFC the function approximator could
not manage this and this hindered the extension to higher-dimensional
input spaces (De Vries et al., 2001; Otten et al., 1997; Starrenburg et al.,
1996; Velthuis, 2000; Velthuis et al., 1998). In the introduction this was
shortly mentioned as the curse of dimensionality. The curse indicates
that the number of parameters needed for approximation grows expo-
nentially with the input dimension. This results in large memory re-
quirements, difficult training and a bad generalisation (Brown and Har-
ris, 1994; De Vries et al., 2001). Learning mechanisms that divide the
input space into small regions are prone to the curse of dimensionality.

2.3.1 Desired properties

Next to the conditions given above, there are several desirable prop-
erties that make the approximator easier to use in practice. The first
desired property is that the method should be capable of incorporating
a-priori knowledge. This can be done in several ways. Two possibilities
are regularisation or limiting the allowed set of functions. Other meth-
ods can be thought of, see e.g. the paper of Schélkopf, Simard, Smola,
and Vapnik (1998) in which the kernel is adapted to represent the a-
priori knowledge.

A second desired property is that the contents of the function ap-
proximator provides useful information. This makes it possible to check
whether the approximator has approximated what was intended, and to
see if its predictions are not unreliably large, with the possibility of dam-
aging the plant. A clear example of the advantage when the contents
of the network gives useful information, is in the case of parsimonious
learning feedforward control (De Vries et al., 2001).

The last desired property is that the method is easy to use. The tun-
ing of the parameters for the approximator should be intuitive and clear.
The tuning of the parameters should not become an optimisation prob-
lem in itself.
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Off-line function approximation

UNCTION APPROXIMATORS ARE treated in this and in the next chap-
F ter. This chapter treats off-line function approximation, while the
next treats on-line approximation. Off-line approximation refers to those
learning mechanisms that require all the data to be available before mak-
ing an approximation.

This chapter starts by treating several off-line function approxima-
tors. The advantages and disadvantages of these function approxima-
tors are discussed in section 3.2. Based on this discussion, a proposition
for a new function approximator is made in section 3.3. First, the new
method is evaluated, and second, the method is compared with other
learning mechanisms. The evaluation and comparison are done in sec-
tion 3.4 and 3.5 respectively. At the end of this chapter, a review of the
chapter is given, including a discussion about whether this method can
be used in learning control or not.

3.1 Off-line methods

Due to the vast amount of literature on function approximation, a selec-
tion is made as to which methods will be treated. Criteria used for the
selection, as well as the methods resulting from these are:

Previously used in LFFC research: B-Spline Networks,

Commonly used in learning control: Ordinary Least Squares, Artificial
Neural Networks, Radial Base Function Networks,

Promising to avoid the curse of dimensionality: Support Vector Machines,
Least Squares Support Vector Machines,

31
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Explanatory reasons: Dual Least Squares.

Methods whose theory is used are treated in more depth than those
which are only used for comparison.

3.1.1 Ordinary Least Squares

The Ordinary Least Squares (OLS) method tries to find a linear relation
between a set of fixed indicator functions f;(x),7 = 1...n and the output
7 of the form:

D1s(x) = b1 f1(x) +bafa(x) + ...+ bufu(x). (3.1)

By selecting a set of n functions and an allowable range for b, the set of
functions that can be approximated is determined. The functions f;(x)
are called indicators or basis functions and can be non-linear functions of
the input vectors. These functions implement a mapping from the input
space to a feature space. A linear approximation is made in this feature
space.

The value of the parameter vector b, containing the elements b;, fol-
lows from the samples given. The use of the quadratic cost function
coincides with a maximum likelihood (ML) estimate for additive Gaus-
sian noise as seen in section 2.1.3.

Define matrix X, column-vectors y and b containing respectively the
indicators for all the N samples, the target values and the parameters:

filxa)  fa(xa) - fulxa) ¥ by

fl(‘x2) fz('xz) fn(‘XZ) v ]/'2 b b:z . (32)

L) falxn) o falxy) - by

in which the subscript of x and y indicates the sample number. The
target vector y is assumed to be corrupted by ii.d. noise, denoted by
&. Using the matrix notation introduced above, the following relation
holds:

y=Xb+e (33)

with

E(e) =0 and E(ee") = oL (3.4)
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The minimisation of the summed squared approximation error is given
as:

min (4 |Xb — |13 + 32 [[b]3) (3.5)

The term § |bl|5 is the regularisation term that minimises the parame-
ters and A is a positively valued regularisation parameter.

The solution of this minimisation problem can be found by equating
the derivatives with respect to b with zero, resulting in the well-known
normal equations, see e.g. (Bjorck, 1996; Draper and Smith, 1998; Stew-
art, 1998):

d(IXp—yl3+Alp3)  d((Xb—y) (Xb—y)+AbTD)
2 db 2 db
= X'Xb + Ab — XTy. (3.6)
y

Equating this derivative with zero yields:
(xTx n /\1) b =Xy, (3.7)

in which I is the identity matrix. To solve the normal equations, it is
necessary to solve a system of equations with the size of the number of
indicators, n. The size of the system is independent of the number of
samples supplied to it, N, which makes it attractive in situations when
there are few indicators but many samples.

When the parameter vector b is known, the output for a new sample
Xnew can be predicted. Based on (3.1), the prediction is calculated as:

Tis (Xnew) = Z bifi(xnew) (3.8)
i=1

or, if the matrix presentation is preferred,

15 (Xnew) = f(Xnew )b (3.9)

in which f is a row-vector, with the values of the indicator functions for
X: f(xnew) = [fl (xnew)/fZ(xnew)/ cee /fn(xnew)}'

Example 3.1

Let us illustrate the use of ordinary least squares with an example. The data for
which a relation is sought, is data set 1. For this example, we collect 25 noise-
free samples whose inputs are evenly distributed on the input space. We want to
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output (y) .
o o

|
—
Q1

Figure 3.1: Approximation with a radial base function with fixed width
and centres

approximate these samples with 10 indicator functions. The indicator functions
are chosen to be Gaussian functions with equidistant centres:

fi(x) =exp (—M) (3.10)

202
with
i 1

T

i=1,...,10. (3.11)

o is equated with the distance between the centres, ¢ = 0.11. The matrices X
and y are formed, based on this data. The first elements of these are given as:

1.00 0.61 0.14 0.01 0.00 ... 0.91
0.93 0.82 027 0.03 0.00 ... —1.00
0.75 0.97 046 0.08 0.01 ... 0.94
X= 1053 099 068 017 0.02 ...|.y=|-054]- (3.12)

032 0.88 0.88 0.32 0.04 ... —1.00

The size of matrix X is 25x 10 and y is 25x 1. The normal equations (3.7) are
used to calculate the parameter vector b, based on these matrices. With the pa-
rameter vector a prediction can be made (3.8), see figure 3.1. In this figure, the
black dots are the training samples, the black line the approximation and the
four gray Gaussian functions are four out of the ten indicator functions. The
approximation with these Gaussian functions is not good at small values of x. &

3.1.2 Dual Least Squares

Instead of equating the derivatives of the minimisation criterion with
zero as in (3.7), the criterion can also be minimised by the use of opti-
misation theory, e.g. (Aoki, 1971). This results in a dual representation
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of the least squares problem. The minimisation problem of (3.5) can be
rewritten to a standard form for optimisation:

mgn(%eTe 1 %AbTb) (3.13)
with equality constraint
y—Xb—-—e=0, (3.14)

in which e is a column-vector containing the approximation error for
all the samples. This form allows a Lagrangian to be constructed by
which the minimisation problem can be solved, see appendix A.1. The
Lagrangian is given as:

L£=1eTe+IAb"b +al(y —Xb—e). (3.15)

The vector « consists of the Lagrangian multipliers and has the same
dimension, N, as the number of samples. The solution of the minimisa-
tion problem can be found by equating the derivatives of the Lagrangian
with respect to b, e and « with zero:

% — Ab-XTa =0, (3.16a)
% = e—n= 0, (316b)
% = y—Xb—-e=0. (3.16¢)

The solution of the optimisation problem can be formulated in the pri-
mal variable b, or it can be specified in the dual variable «. This is
achieved by elimination through substitution of e, « or of e, b respec-
tively in (3.16). In the primal form it is found that:

(M + xTx) b = XTy, (3.17)

which is, as expected, identical to the solution found in (3.7). In the dual
form, the solution is given as:

1
<1+ XxxT> x =y, (3.18a)

b =22 (3.18b)
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This can be slightly rewritten for convenience, by using & := &/ A:

(A1+xxT)a =, (3.19a)
b = X' (3.19b)

The matrix product XXT contains the innerproducts of all the training
samples with the other training samples in the feature space:

[xxT} = () E(x)". (3.20)
)
The number of equations corresponds to the number of samples. This
time, it is independent of the number of indicators.

The prediction for the dual least squares for a new input Xpew can be

given in terms of matrices:

Jd(Xnew) = f(Xnew)b (3.21a)
= f(xnew) X'a, (3.21b)

or in the form of a summation:

]?d(xnew) = Zbifi(xnew) (3.22a)
i=1
N

= (£(xnew) , £(xi))a;. (3.22b)

—_

Note that the prediction with the use of « (3.22b), as well as the calcula-
tion of « (3.19a), do not depend on the individual elements of the feature
space, but solely on the innerproducts in the feature space. Therefore,
large or even infinite dimensional feature spaces can be used. The large
dimensional feature space can be illustrated with an approximation by
polynomials. The infinite dimensional feature space is illustrated later
on in example 3.3

Example 3.2 (Large feature spaces)
Let us assume that we wish to approximate a relation based on two inputs with
a second order polynomial. The sought relation is of the form:

§ = by + byxy + boxy + bax1xp + byx? + bsx3. (3.23)

The indicator function in this approximation is given as:

f(x) = |:1/ X1,X2,X1X2, x%/ x%j| . (324)
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The innerproduct in the feature space between two vectors becomes:
£()7(y) = 1+y121 + yax2 + yayaxixg + y322 + 1363 = ((x,y) +1)%. (3.25)

When the degree of the approximation or the number of inputs increases, the
number of indicator elements swiftly increases in (3.24). As indicated by the
last term of (3.25), the innerproduct of the indicator functions can still be easily
calculated. =

3.1.3 Support Vector Machines

The support vector machines were introduced by Vapnik (2000) for clas-
sification and regression. This method is based on statistical learning
theory and for more on the subject, see (Campbell, 2000, 2002; Cristian-
ini and Shawe-Taylor, 2000; Scholkopf, Mika, Burges, Knirsch, Miiller,
Rétsch, and Smola, 1999; Smola, 1998; Vapnik, 2000).

The set of functions is again described by the representation of (3.1),
although the offset is explicitly denoted. This yields the following struc-
ture:

Jovm = £(x)b + by (3.26)

The cost function that is used, is not the quadratic cost function, but the
e-insensitivity function as given in (2.11). This allows for errors smaller
than € to go unpunished. This cost function has the following properties
relative to the quadratic cost function:

e Less sensitive to outliers,
¢ Results in a sparse solution.

The diminished sensitivity of the e-insensitive cost function is given in
(Huber, 1981) and can be explained by the noise distribution for which
this cost function will give an ML estimate. The second property will be
made clear in this section.

The minimisation problem is formulated as:

N
A
i f(xX)b + by — yilc + =bb. 3.27
rlg}g;;:l,\ ()b + by — yile + 5 (3.27)

This minimisation problem is rewritten into a form that can be solved,
using optimisation theory. The equivalent problem is defined as:

N
min C Y (& +¢&)+ b, (3.28)
Y0 i=1
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Figure 3.2: Variables used in equation 3.29

with the following constraints:

fx)b+by—y;, < €+¢;, (3.29a)
Yi— f(x)b—by < e+ (:;k, (3.29b)
—Gi <0, (3.29¢)
—Gi < 0. (3.29d)

The variables used in these equations are illustrated in figure 3.2. The

¢ Z.(*) are slack variables and are used to construct the e-insensitive band.
¢* represents the distance from a training sample to the upper boundary
of this band. If the value of the target is smaller than the value for the
prediction plus the allowable error €, then this slack variable will be zero.
¢ works just the other way round. So, in the figure ¢; will have a non-
zero value because the target is smaller than the prediction minus the
insensitivity zone. The value of {j will be zero because the value of
the training sample is smaller than the upper-side of the band. For the
training sample y, both slack variables are zero and finally, for y3 only
¢ will be non-zero.

In the notation of the minimisation problem, C takes the place of A,
to be compatible with the svM literature. C and A are inversely pro-
portional to each other. This optimisation problem can be solved by
using the Kuhn-Tucker theorem, which is stated together with the cal-
culations, in appendix A.

The result is a dual optimisation problem:

N N
maxZoc —oc Z«X +0c

[ %
i=1
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yAsvm —€ ]}svm ]}svm + €

Figure 3.3: Relation between Lagrangian multipliers and slack variables

In this equation a*) are Lagrangian multipliers. The following con-
straints should be fulfilled so that the solution is feasible:

0<a; <C, (3.31a)
0<a; <C, (3.31b)

M=

(aj —aj) =0. (3.31¢)

i=1

The Karush-Kuhn-Tucker conditions (KKT) given below, hold at the op-
timum (Cristianini and Shawe-Taylor, 2000):

aj(f(xj)b+bo—yi—€e—&) = 0, (3.32a)
af (yi —f(x;))b —bp —€e —¢;) = 0, (3.32b)
i =0, (3.32¢)
o = 0, (3.32d)
(a; — C)&; =0, (3.32¢)
(af = C)&f = 0. (3.32f)

This convex optimisation problem can be solved efficiently by the SMO
algorithm (Mangasarian and Musicant, 1998; Shevade, Keerthi, Bhat-
tacharyya, and Murthy, 1999).

The relation between the slack variables and the Lagrangian multi-
pliers is illustrated in figure 3.3. This figure is a cross-section of figure 3.2
for some value of x. In region I the training sample is smaller than the
prediction minus the insensitivity zone. As noted before, the value of
the slack variable ¢ has a positive value in this situation. Due to the KKT
condition (3.32e), it follows that the corresponding Lagrangian multi-
plier « is equal to C.

In region II the training sample is equal to the prediction minus the
insensitivity zone. Actually, this is not a region but a line. Due to the
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same KKT condition, the value of a can take a value different from C.
Due to the conditions for a feasible solution (3.31a) the value should be
between zero and C.

In the remaining regions ¢ is zero. Therefore, it follows from (3.32a)
that « is zero. The slack variables and Lagrangian multipliers a* and ¢*
can be found by similar reasoning.

In region II the value of & is non-zero and ¢ is zero. Incorporating
this in (3.32a) and (3.32b), by can be calculated:

bp=y; —f(x;))b—¢€ for 0 <a; <C, (3.33a)
bp =y; —f(x;))b+e for 0<aj <C. (3.33b)

When the bias and the parameter vector are known, we can calculate
the prediction:

Jsvm (Xnew) = f(Xnew)b + bo (3.34a)
N
= f(xnew) Y (& —a;) £1(x;) + bo (3.34b)

i=1

(af — ;) £ (xnew ) £1 (x;) + bo (3.34¢)

I
™=

I
—

I
™=

I
—

(] — ;) (£(xnew), £(x;)) + bo. (3.34d)

In the transition from (3.34a) to (3.34b) the equality (A.15) of appendix A
is used. The same observation as was made for the dual least squares
can be made for SVM: for the calculations of the Lagrangian multipliers
as well as for the prediction of the output, the indicator vectors are only
used in innerproducts and the individual elements in the feature space
are never used. This makes it possible to use a large, or even an infinite,
dimensional feature space. The advantage of using the innerproduct
instead of the individual elements becomes significant when the num-
ber of elements becomes large and the calculation of the innerproduct is
fast.

In the field of sVM, the innerproduct of two samples in the feature
space is called a kernel function: k(x,y) = (f(x), f(y)). Numerous ker-
nel functions are known that can use splines, polynomials, radial base
functions, sigmoidal functions or a user specific function to find a rela-
tion in the data. Mercer’s theorem gives conditions how to test whether
a kernel is a valid innerproduct in some space (Mercer, 1909). This can
be used to test whether a kernel function is a valid innerproduct when
it is not explicitly created from an innerproduct.
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The prediction for a new sample is a weighted sum of the inner-
products with the training samples as given in (3.34d). The weights are
given by the Lagrangian multipliers, and when these are zero, the in-
nerproduct with the corresponding training sample does not have any
influence on the prediction. This makes the training sample superfluous
for prediction and it can safely be forgotten after the training phase. The
weight in the summation is zero if both ocf and «; are zero, which hap-
pens in the insensitivity zone. The training vectors that have a non-zero
weight are called support vectors. This is a subset of the original training
set, and only this limited number of training samples has to be stored
for the approximation.

Because the innerproduct is used in the feature space and not the
individual elements, the dimension of the feature space does not matter.

This means that the SVM can use an infinite dimensional fea-
ture space, and the data is summarised by means of only a
limited set of training samples and their corresponding La-
grangian multipliers!

Example 3.3 (Infinite splines)

To illustrate the use of this statement, we will approximate the samples of data
set 1 with a piecewise linear function. A piecewise linear function can be de-
scribed by first order splines. The knots of these splines are at xy 1, ..., xy ,. The
indicator function for this approximation is written as:

£(x) =[1, (x = x101) 1, (X = X12) /o, (X = X1 0) 4] (3.35)
in which:

0 if x < xk,i

(x—xi)+ = { (3.36)

(x —x;) otherwise.

The indicator functions are plotted in figure 3.4 as the gray dashed lines. In the
same figure, a function that can be constructed with these indicators is given as
a solid black line. The kernel function of this indicator function is given by its
innerproduct:

K y) = )T () = 14 Y (x — x100)+ (7 — 3300+ (337)
i=1

However, the calculation of this innerproduct is computationally demanding,
because of the summation. If we want to approximate the relation with an infi-
nite number of splines, the summation is replaced by an integral (Vapnik, 2000).
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Figure 3.4: Approximation by first order splines. The dashed lines indi-
cate the indicator functions.
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Figure 3.5: Approximation of function with SvM for different values of

This leads to the following calculations:

1
k(x,y) = 1+ /o (x = x30i) +(y — xi )+ doxg s (3.38a)
min(x,y)
= 1+ /o (x = x1i)+ (Y — %)+ doxg s (3.38b)
= 14 min(x,y). (3.38¢)

Because of the general set of functions that can be approximated by this kernel,
and because of the fast evaluation, this kernel shall be often used in the remain-
ing of this thesis.

With this kernel function the data is approximated. The regularisation pa-
rameter C is chosen as C = 10°, which nearly disables the regularisation. The
allowable error is set equal to € = 0.2 and 0.4 respectively. The data as well as
the approximation are given in figure 3.5. If ¢ = 0.2 there are 311 support vec-
tors and if € = 0.4 only 31 support vectors are required to summarise the data. @



3.1. OFF-LINE METHODS 43

In example 3.3 it can be observed that the number of support vectors
depends significantly on the insensitivity zone. If this zone is small com-
pared to the noise, a large number of support vectors result, which gives
a noisy approximation. On the other hand, if the € zone is large, only a
few number of support vectors result, which gives a rough approxima-
tion. This can easily be explained by recapitulating that the Lagrangian
multipliers are zero within the insensitivity zone.

3.1.4 Least Squares Support Vector Machine

Closely connected to both svM and dual least squares is the method
of Least Squares Support Vector Machine (LSSVM) (Gestel, Suykens, De
Moor, and Vandewalle, 2001; Suykens, Van Dooren, De Moor, and Van-
dewalle, 1999; Suykens and Vandewalle, 2000). The LSSVM method is
similar to the SVM setting except that it uses a quadratic criterion in-
stead of an e-insensitive cost function. This makes it nearly equal to the
dual least squares setting, the only difference is that LSSVM does not reg-
ularise the value of the offset term, see appendix A.1. Furthermore, the
solution based on all the training samples (3.22b) is not seen as the final
result. Just as with SVM, a subset of these training samples is striven
for. A pruning mechanism is used to successively remove those train-
ing samples that have little influence on the current approximation, thus
obtaining a sparse solution. The sample with the smallest influence on
the current approximation is the sample with the smallest parameter.
In De Kruif and De Vries (2003c) an improved pruning mechanism
is introduced for LsSVM related to the Optimal Brain Surgery of Hassibi
and Stork (1993). This pruning mechanism removes those support vec-
tors that give the smallest increase of errors after they are removed. The
error that is introduced if support vector i is removed, is:
AE i (3.39)
1 4[XTX] ;1 . .

The LssvM with the alternative pruning mechanism will be indicated
as LSSVM+. LSSVM+ gives a smaller approximation error than LSSVM
for a fixed number of support vectors, or alternatively, LSSVM+ requires
fewer support vectors than LSSVM for an allowable approximation error.
This will be illustrated in section 3.5.

Example 3.4

The result of LSSVM before pruning is nearly equal to the result of the dual least
squares. This makes the example before pruning applicable to both methods.
Data set 1 is again used, while the approximation is done by piecewise linear
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Figure 3.6: Approximation with dual least squares (or LsSSVM) without
regularisation
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Figure 3.7: Approximation of data by LssvM with regularisation

approximation as constructed in example 3.3. First the approximation is made
without regularisation. The result is given in figure 3.6. The approximation of
the data is noisy which can be explained by looking at the kernel function that
is used. This kernel allows all the training samples to be approximated with-
out error, which indeed happens. Incorporating the regularisation term in the
LSSVM approximation, results in figure 3.7. In subfigure (a) the result before
pruning is given. The result after pruning is given in 3.7(b). Only 20 support
vectors remain after pruning. The number of remaining support vectors is user-
determined. =

3.1.5 B-Spline Network

In previous work on LFFC, Basis-Spline Networks (BSN) were used as
function approximator (Velthuis, 2000). A BSN uses a B-spline function
as indicator function. The order of the B-spline determines the smooth-
ness. The unscaled spline of order d is given as (Unser, Aldroubi, and
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Figure 3.8: Basic splines of differ-  Figure 3.9: A possible BSN built
ent orders of first order B-spline
functions

Eden, 1991):
fHx) = A1)« fO>x) with =1 iff —05<x <05, (3.40)

in which * indicates the convolution. The basis splines of order zero to
two are given in figure 3.8. For multi-dimensional B-splines the tensor
product of uni-dimensional B-splines is used (Velthuis, 2000):

% y) = f1x) A (y) (3.41)

The B-spline functions are distributed on the input space to approx-
imate the data. An one-dimensional example with first-order splines is
given in figure 3.9. In this figure it can be clearly seen that the B-spline
functions only exert influence on the output in a certain region. This
region is called their support. The width of the B-splines can be altered
to allow for fast or slowly fluctuating approximations; the symmetry
too can be adapted in order to meet the demands on the approximation
better.

Due to the limited support of the B-splines, they have to be distri-
buted in such a way that they cover the complete input space. Because
the input space is divided into regions by the limited support of the
splines, the number of splines required to cover the space grows expo-
nentially with the dimension of this space. The exponential growth of
splines is known as the curse of dimensionality and makes it inappli-
cable to approximate relations with several inputs. With the B-splines
seen as indicator functions, the accompanying parameter vector can be
calculated as indicated by ordinary least squares.
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3.1.6 Radial Base Functions

The Radial Base Function (RBF) is a set of functions that is symmetric
around a centre. The Gaussian function that was used in the example
with least squares and repeated below is therefore an RBF:

filx) = exr><—%> : (3.10)

An overview of RBF approximation is given in Ghosh and Nag (2001).
Just as with B-splines, the RBF can act as an indicator function and can
therefore be used in a learning method such as OLS or SVM. If this in-
dicator function is used in a OLS setting, the width, o, as well as their
centres, ¢;, should be known to form the indicator matrix X. In the SvMm
setting only the width has to be known, because the centres are deter-
mined by the training data.

The RBF has given rise to a set of learning mechanisms that were es-
pecially constructed for this type of function. These mechanisms can al-
ter the number of centres, the location of the centres as well as the widths
and are called Radial Base Function Networks (RBFN). A learning mech-
anism that is capable of changing the centres is given in e.g. (Chen, 1995;
Lippmann, 1989). These two references place the centres by means of
some vector quantisation algorithm. The result of this approach is that
more centres are located in regions where there is more training data.
The idea behind it is that if there are more training samples in a region,
it is likely that also more predictions are required in this region. There-
fore the approximation in this region should be accurate. This does not
necessarily mean that many centres are required in that region for a cor-
rect approximation.

The number of centres that is required for an approximation is al-
tered in e.g. (Chen, Cowan, and Grant, 1991; Fun and Hagan, 1999;
Gomm, 2000). They go on adding RBF one by one until some stopping
criterion is met. The possible locations of the centres are the input values
of the training samples. The location that is selected for a new centre is
the location by which the norm of the error after inclusion is minimised.
Because these methods add centres, so that the residual is minimised,
the centres are located where they are required for a correct approxi-
mation. However, selecting one centre at a time does not guarantee the
optimal location of the centres (Miller, 1990).

Esposito, Marinaro, and Scarpetta (1998) include centres, as the pre-
vious methods do, until a correct approximation is found. However,
between two additions the width can be altered for more flexibility to
approximate fast fluctuating regions.
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Figure 3.10: The multilayer perceptron

3.1.7 Multilayer Perceptron

A Multilayer Perceptron (MLP) is an Artificial Neural Network (ANN)
that consists of a set highly connected small processing units. These pro-
cessing units typically perform some non-linear function of the weigh-
ted sum of the inputs. By altering the weights, different functions can
be realised (Haykin, 1994; White, 1992; Zurada, 1992). This thesis only
makes use of feedforward ANN with one hidden layer, the MLP, of which
the structure is given in figure 3.10. The bottom layer is called the in-
put layer, the middle layer is called the hidden layer and the top layer
is called the output layer. In this figure ¢; is some non-linear function
that is evaluated on the weighted sum of the input variables. The out-
put function f, which is often linear, has the weighted sum of the hid-
den layer’s output for input. The black dots in the figure represent the
weights. The output is:

n k
yann = f <Z wi(PZ‘ (2 ZUZ]JC]>> , (3.42)
i=1 j=1

in which w; is the weight connecting the output neuron with hidden
neuron i, and wj; is the weight connecting input j with hidden neuron
i. If the term neural network is used in this thesis, it always concerns a
multilayer perceptron.

The weights will get a value during the training phase. The data set
is repeatedly supplied to the MLP and the weights are adapted in the
direction which decreases the error. This is done by the back propaga-
tion algorithm that can be found in (Haykin, 1994; White, 1992; Zurada,
1992). This optimisation routine often gets stuck in a local minimum.

The number of hidden neurons determines the freedom the network
has to approximate the relation within the data. The number of hidden
neurons is unknown beforehand and can be determined by trial and
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error. Just as with RBF functions, the number of hidden neurons can be
increased during training (Fahlman and Lebiere, 1990), or the number of
hidden neurons can be decreased after learning (Cun, Denker, and Solla,
1990; Hassibi and Stork, 1993; Prechelt, 1997; Reed, 1993; Stahlberger
and Riedmiller, 1997; Van de Laar and Heskes, 1999).

3.2 Discussion

Although it would be convenient if one of the above mentioned meth-
ods could be directly used in a control setting, it is believed to be im-
possible due to their idiosyncracies. However, investigating these pe-
culiarities will give a possibility to combine their potential to obtain a
function approximator with advantageous properties.

3.2.1 Ordinary Least Squares

The OLS method is well documented and therefore, much is known
about its properties. See, e.g. (Bjorck, 1996; Draper and Smith, 1998;
Golub and Van Loan, 1996; Kleinbaum et al., 1987; Stewart, 1998). Due
to the close resemblance with projections, algorithms taken from linear
algebra can be used to support the implementation of OLS. The OLS
method results in an unbiased, minimal variance estimate.

The main difficulty with OLS is to select a good set of indicator func-
tions beforehand.

3.2.2 Support Vector Machines

The SVM uses only a limited amount of the training samples for the pre-
diction of the data. The calculations for the prediction and the calcula-
tions to get the parameters needed for the prediction, are done based on
the innerproducts in the feature space. An innerproduct is an (unnor-
malised) similarity measure and the SVM therefore uses the similarity of
the new sample with the training samples in some space for prediction.
Because the prediction is based on similarities with training samples,
there is no need to divide the input space into regions, which makes it
less prone to the curse of dimensionality. This makes the sample-based
approach attractive to use for function approximation in learning con-
trol.

However, the use of the e-insensitive cost function gives rise to un-
desirable behaviour. First, which was already illustrated in the section
on SVM in figure 3.5, there is the sensitivity to the choice of the value
for e. If the value of € is selected too small, too large a set of support
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Figure 3.11: SvM-approximation of a sine with € = 0.01,0.1, 0.5 respec-
tively

vectors will result, giving a noisy approximation. On the other hand, if
the value of € is too large, the extrema will be cut off. This behaviour
is illustrated in figure 3.11 and is accounted for by the insensitive zone.
The number of the indicators used, is respectively 507, 384 and 119 for
€ = 0.01,0.1 and 0.5. The regularisation parameter C was given a value
of 10°.

Second, the number of support vectors is rather large for the com-
plexity of the relation in the approximation of figure 3.11. For the ap-
proximation in which an error of 0.5 is tolerated, the number of required
support vectors is 119. All these support vectors are located at the ex-
trema of the sine. This behaviour can be explained if the regularisation
term is observed. It minimises the 2-norm of the weight vector. The
value of this term will be smaller if more small parameters are used,
instead of one large parameter. This results in locally concentrated sup-
port vectors.

The third inconvenience is the oscillatory approximation if two train-
ing samples have a nearly equal input, but a difference in output larger
than 2e. As a sample with a prediction error larger than € becomes a
support vector, both samples become support vectors and try to min-
imise their own approximation error. The approximation resulting is
therefore oscillatory. See section 3.5.1 for an example of this behaviour.

So, although the sample-based approach is attractive, the disadvan-
tages due to the e-insensitive zone make the SVM unattractive for direct
use in learning control.

3.2.3 Least Squares Support Vector Machine

The use of the quadratic cost function avoids the disadvantages in SVM
due to the e-insensitivity zone. However, the sparseness that was inher-
ently due to this insensitivity zone is no longer there. Sparseness has
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to be arrived at by pruning. When significantly fewer support vectors
are required than there are training samples, the pruning will take con-
siderable computation time. The result represents, just as in SVM, the
complete data set with only a limited number of samples.

The pruning mechanism for LSSVM omits those samples from the
training set that do not largely influence the prediction. However, omis-
sion of samples from the training set removes information on the under-
lying relation, which is an undesired property.

Furthermore, LSSVM has difficulties with double input samples. If
there are two equal inputs, the matrix XXT will be singular, making it
impossible to determine the vector « of (3.19). The regularisation term
will make the system solvable, although the numerical condition of the
system will be bad for small regularisation.

3.2.4 Multilayer Perceptron

As already mentioned in section 3.1.7, neural networks often get stuck
in local minimum. Besides, the number of neurons to approximate the
data is unknown beforehand. What has not been mentioned yet, is that
it is a time-consuming task to train an MLP. All the data needs to be
repeatedly presented to the network before the parameters converge.

After convergence of the parameters to some minimum, superflu-
ous weights can be pruned (Cun et al., 1990; Hassibi and Stork, 1993;
Prechelt, 1997; Reed, 1993; Stahlberger and Riedmiller, 1997; Van de Laar
and Heskes, 1999), but this will increase the training time. In addition,
the superfluous weights are pruned for the found minima, which may
be local and therefore not useful anyway.

The idea of Fahlman and Lebiere (1990) is to include one neuron
a time. The input weights of the newly added neuron are trained in
such a way that it has the largest correlation with the remaining error,
and are then fixed. Afterwards, the output weights of all the neurons
are retrained. If the remaining error is still too large, a new neuron is
included. The decision when to stop this procedure is left to the user.

This idea is closely related to the forward subset selection scheme
given in Miller (1990). In this scheme a basis function is chosen from
a set of possible indicator functions that is most closely correlated to
the remaining approximation error. The difference is that Miller uses a
discrete set of indicator functions, while Fahlman and Lebiere use a po-
tential indicator function that has some parameters that are tuned until
it is as close as possible to the residual. The advantage of the growing
neural network approach over static neural networks is that the number
of neurons is fit for the task on hand.
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3.2.5 Radial Base Function Networks

Just as the B-spline, the RBF is a function that can be used as an indicator
function, and the influence of this function is semi-local. This makes the
indicator function prone to the curse of dimensionality if it is set with
fixed widths and centres.

The methods that include centres with a fixed width at locations of
input samples spans the same set of functions as the (LS)SVM. Because
the width is fixed, the space is divided into regions, although the centres
of these regions are undetermined.

In Esposito et al. (1998) the RBFN grows with one basis function at a
time. The new RBF is centred at the location where there is the largest
residual. The RBF is only active in a limited region which is determined
by the location of the other centres. Because it alters the spread of the
function and the region of activation based on the data, it is less likely
to fall for the curse than when fixed spread is used.

3.3 Proposition of Key Sample Machine

Based on the evaluation of the different methods, we believe that a new
approximator can be constructed that better suits our needs by combin-
ing the following ideas:

¢ Use the summed squared approximation error as cost function,
o Use the sample-based approach of SVM and LSSVM,

¢ Use some of the samples for the prediction, but use all the samples
for the training (data compression),

o Use a subset selection scheme that fits the problem on hand to select
the samples that are needed for the prediction.

These points are treated separately. An overview of the final algorithm
is given in algorithm 3.1 on page 59.

3.3.1 Cost function
A quadratic cost function is chosen for the following reasons:

Literature: This cost function is used frequently and therefore there ex-
ists a vast amount of literature.
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Unbiased: The use of the quadratic cost function gives an unbiased ap-
proximation. This in contrast with the e-insensitivity function that
results in a biased estimate (Chan, Chan, Cheung, and Harris, 2001).

ML for Gaussian noise: The least squares cost function results in a max-
imum likelihood estimate of the approximation for Gaussian noise.
Gaussian noise is often assumed although this makes the method
sensitive to outliers.

Implementation: Because the close resemblance between the solution of
the least squares problem and projections in the field of linear alge-
bra, there is a vast amount of algorithms to support the implemen-
tation.

The selection of the appropriate training samples now becomes a sepa-
rate subproblem, while for SVM the selection of the samples was inher-
ently present in the optimisation problem. This separation opens the
possibility to use a selection mechanism that best fits the problem on
hand.

3.3.2 Sample-based

The methods that use the innerproduct to train the parameters for the
prediction, as well as for the prediction itself, will be called sample-based,
because its calculations are based on similarities with the training sam-
ples. In such schemes the input space is not necessarily divided into
regions and an exponential growth of the number of parameters with
increasing input dimension can be circumvented. The curse of dimen-
sionality limited the performance of the learning control scheme in pre-
vious work. Therefore, to be less prone to the curse of dimensionality,
we use a sample-based approach.

The actual number of samples that summarises the data depends on
the complexity of the underlying relation in the data and of the feature
space thatis used. Adapting this number is equivalent to using a flexible
number of hidden neurons or RBFs.

3.3.3 Data compression

As with LSSVM(+), we want to decrease the number of samples required
to calculate a prediction for a new sample, but opposed to LSSYM(+), we
do not want to decrease the number of samples for the training. So, for
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the prediction in (3.22b) and repeated below

N
Jd (Xnew) = Z<f(xneW) (xi))ai, (3.22b)
i=1
we do not want to take the weighted sum with the innerproducts for
all the N training samples for a prediction, but we do want to use N
training samples to calculate a;.

In order to use all the samples for training, and only a limited num-
ber for prediction, we use the kernel function with a set of selected sam-
ples, the key samples, as indicator functions, and an OLS scheme to calcu-
late the corresponding «. Later, it will be explained how this limited set
of key samples is found.

First, it is shown how the kernel function for a sample can be inter-
preted as an indicator function for the OLS scheme. For sample i, with
input x;, we define the dual indicator function f;(x) as:

fitx) = k(x,x;) = £()f(x;)". (3.43)
The second equality was treated in section 3.1.3. Substituting the dual

indicator function (3.43) into the prediction for dual least squares (3.22b)
results in:

Xnew Z f i xnew (3-44)

Comparing this with the predication for the ordinary east squares (3.8)

15 (Xnew) Z fi(Xnew )b (3.45)

clearly shows the resemblance between these approaches. Now, if only
n key samples are used for the prediction and there are N samples in
the training set (n < N), then, similar to OLS, an indicator matrix can be
constructed:

[Axa)  fa(x) fn(x1)
% fl(:xz) fz(:Xz) ) fn(:XZ) (3.462)
LAGxn) fa(xn) <o falxn)
[k(x1, %) k(X1 Xsp) -+ k(x1,Xis )
k(xo,xks1)  k(x2,Xksn) -+ k(X2 Xks )
- e ey (3.46b)
_k(xN/.xks,l) k(er xks,Z) T k(XN/ xks,n)
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in which x; denotes the i" key sample. Using a target vector and a
parameter vector identical to (3.2), then the normal equations (3.7) can
be used to calculate the parameter vector b:

X™X)b = XTy. (3.47)
The prediction for a new input Xpey is calculated as:
n n

7 (%new) z Xnew )b E<f(xnew) £(xi))b;. (3.48)

=1

in which only 7 key samples are used for the prediction. However, for
the calculation of the parameters b;, N samples are used.

With these sample-based dual indicator functions, only a limited set
of samples is used to predict all the data, but all the data is used to train
the parameters corresponding to the limited set of indicator functions.

3.3.4 Subset selection scheme

With the dual indicator functions used in an OLS scheme, the parame-
ter values can be calculated. However, the dual indicator functions for
prediction, still have to be selected. This is equal to the selection of an
appropriate structure for the approximation. Because the dual indicator
functions are directly related to the training samples (3.43), selecting a
set of dual indicator functions is the same as selecting a set of key sam-
ples from the training samples. All the training samples are considered
potential key samples, or, in a different terminology, all the dual indica-
tors function stemming from the training samples are potential indicator
functions.

There are several methods available for the selection of indicators
from a set of potential indicators (Chen et al., 1991; Draper and Smith,
1998; Funival and Wildon Jr, 1974; Miller, 1990). These methods can be
divided into three main groups:

1) forward selection,
2) backward elimination,
3) complete search.

The forward selection starts without indicators and will add that indica-
tor that will minimise the sum squared error or some other norm. The
backward elimination will start with all the possible indicators and will
omit one indicator at a time until some criterion no longer holds. The
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complete search will test all the possible combinations of indicators.
This can be done in such a way that not all the combinations are ac-
tually tried (Funival and Wildon Jr, 1974), but the computational time is
still prolonged. The first two methods cannot guarantee finding the op-
timal solution (Miller, 1990). It goes without saying that combinations
of these methods are possible.

As the number of required indicators is generally much smaller than
the number of potential indicators, forward selection is generally much
faster than backward elimination, and for this reason the forward selec-
tion method is used hereafter. The testing of all the combinations is not
a feasible method when the number of potential indicators is significant.

The forward selection scheme adds one indicator at a time. The po-
tential indicator function that is added is that indicator that maximally
decreases the remaining summed squared approximation error after in-
clusion.

It follows from (3.46b) that each indicator generates a column vector
in X. The height of this column vector corresponds with the number of
samples. The residual of the current approximator for the given train-
ing set is given as e = y — Xa, which is also a vector of dimension N.
Now we want to add the indicator, that decreases the summed squared
approximation error most. If an indicator could be found that is linearly
related to the residual vector e, the inclusion of that indicator would
make the residual zero. The presence of such an indicator is not likely.
However, its closest match is that potential indicator vector that will
generate a column vector in X that makes the smallest absolute angle
with the residual vector e. Or more precisely, the maximum of the co-
sine squared of this angle:

2
(eTa))
err; = cos(0)? = ———~%—, (3.49)

a'a. (eTe)

in which err; is the normalised change in error due to the inclusion of
potential indicator i and a; the column vector spanned by this indica-
tor for all the samples. The potential indicator with the largest change
in error should be selected for inclusion. This result has been proven
to maximise the decrease of the summed squared approximation er-
ror (Chen et al., 1991; Fun and Hagan, 1999; Miller, 1990). As argued
in section 3.2.4, this selection scheme is closely related to the selection
scheme used in (Fahlman and Lebiere, 1990).

Example 3.5 (Successive steps of an approximation)
We want to approximate 25 data points of data set 1 by first-order B-splines. For
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Figure 3.12: Six potential indicator functions

this example, the data points are distributed at equal distances across the input
range. The potential indicator functions for this approximation are:

Hax—x)=fOlx—x)*fOx—x), i=1...25 (3.50)

with

if —05<x—x; <O0.
fo_{l if —05<x—1x; <0.5, (351)

0 else.

Six of these potential indicator functions are shown in gray in figure 3.12, one
of which is highlighted. These potential indicators differ in the location of their
centres. In this figure the function we want to approximate is also shown.

In figure 3.13, successive steps of the approximation are given. The top-left
figure shows the residual in black and the cosine squared of the angle between
the residual and the potential indicator function in gray. This cosine squared
gives the correspondence of the potential indicator and the residual. As there is
no prediction in the first step, the residual is equal to the targets. It can be seen
that the maximal value of the correspondence occurs at x = 1.0 and hence this
sample is the first indicator that is selected. The prediction with this one key
sample is given in the top-right.

The residual after two inclusions is given in the second graph from the top
on the left. The correspondence is plotted in the same figure. After the inclusion
of the new key sample, the approximation is shown on the right-hand side of
this figure. The figures show the approximation after inclusion of the first, third,
fifth, seventh and ninth key sample.&

Stopping criteria

When the best potential indicator has been identified, it should be de-
cided whether it is good enough to be included for the prediction or
that the inclusion of more indicators should stop. A criterion is pro-
posed that keeps including more indicator as long as the probability
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is too small that the new parameter is zero. Hence, this test evaluates
whether noise is fitted or the underlying relation.

Define the extra sum of squares S? as the difference between the
summed squared approximation errors of all samples before and after
the inclusion of the candidate indicator. In (Draper and Smith, 1998;
Kleinbaum et al., 1987) it is shown that for additive Gaussian noise on
y, S?/0? is distributed as x? if and only if the new indicator’s parameter
is zero:

S
2" X1 © a;=0. (3.52)
In this equation, o2 is the variance of the noise.

The hypothesis ‘a = 0’ is tested, and if this hypothesis is rejected
with some predefined significance, the candidate indicator becomes an
indicator. If the new parameter is zero, then the probability that a certain
error reduction is found is calculated as:

52

In this equation ¢ denotes the probability that a realisation of z; or larger
is found. ¢ is called the significance level and the corresponding value of
z; follows from the x? distribution. If the probability for the found error
reduction is too small, then the new parameter is unlikely to be zero,
and therefore, the indicator is included.

2= 0> <z (353)

Example 3.6 (Stopping criterion)
For example, the summed squared approximation error changes from 11 to 10.
The variance of the noise in this example is 0.25. This yields:

1
_— >
P<0.25 =4

« = o) < 4.6%. (3.54)

The probability that this error reduction is found, is smaller than 4.6% if « = 0.
If the significance level of the rejection is set at 5%, the hypothesis « = 0 is re-
jected, and therefore, the indicator is included. =

The noise variance in (3.53) is used to determine when the approx-
imator has to stop including more basis functions. As long as the ratio
S?/0? is larger than z7, the inclusion of new indicators continues. The
noise variance is often unknown for real-life problems and has to be es-
timated. However, the noise estimate can also be interpreted as a design
parameter: setting it large will give a rough approximation, because the
inclusion is stopped early. For a small estimate of the noise level, the
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Algorithm 3.1: Algorithm for Key Sample Machine

Given: Training set (x;, ;)i—1..N
Initial decisions: Noise estimate ¢ and kernel function
1: form potential indicators f; based on x; and kernel for all i (3.43)
2: find potential indicator with largest correlation to current resid-
ual (3.49)
3: while inclusion is significant (3.53) do
4:  add this potential indicator to the set of indicators (3.46)
5. find potential indicator with largest correlation to current resid-
ual (3.49)
6: end while

approximation will be accurate. Care should be taken that, if the pa-
rameter is set too small, the KSM will start fitting noise.

The significance level { is not considered an extra parameter that has
to be given a value, because the effect it has on the inclusion of a sample,
can also be obtained by altering the noise level. For a given significance
level, the noise estimate ¢ can freely alter the value for which the hy-
pothesis is rejected. It is therefore proposed to select a significance level
once, and use the noise estimate as a design parameter to indicate the
accuracy by which the data should be approximated.

3.3.5 Overview of the algorithm

The introduced approximator will be referred to as the Key Sample Ma-
chine (KSM). The complete algorithm for KSM is given in algorithm 3.1.
Before the approximation starts, a kernel function has to be selected to
form the dual indicator functions. The noise level estimate acts as a
design parameter and should also be assigned a value. If a true noise
level is known, this can be selected. However, then the significance level
should be set to a meaningful level.

The test if the inclusion is still significant is done by (3.53). The se-
lection of a potential indicator that comes closest to the residual is cal-
culated, based on the angle between the residual and the indicators as
treated in section 3.3.4. An implementation for this algorithm is treated
in appendix B.1.

Different subset selection schemes available in literature can be used
instead of the forward selection scheme (Miller, 1990).
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Figure 3.14: Approximation of data with different noise levels and num-
ber of training samples

The given algorithm can easily be adapted to incorporate a priori
knowledge in the form of indicator functions. These a priori indica-
tor functions can be interpreted as a set of potential indicators that has

already been included. Additional indicators from the set of potential
indicators are selected as before.

3.4 Evaluation

A series of function approximations is made to illustrate and test the
performance of the KsM. The first set of function approximations is per-

formed in order to test whether the stopping criterion works appropri-
ately.
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Stopping criterion

The results of these approximations are illustrated in figure 3.14(a) up
to (d). Data from data set 1 is used with a different number of train-
ing samples and noise. The number of training samples that is used, is
respectively 250 or 2000 and the noise standard deviation is ¢ = 0.1
or ¢ = 0.01. The set of potential indicator functions was chosen as
fi(x) = 1+ min(x,x;). This results in a piecewise linear approxima-
tion. No indicator functions were included as a priori knowledge. The
only parameter that has to be given a value, is the estimate of the noise
variance for the use in (3.53). For this set of evaluations, it is selected
as the correct noise level. The sensitivity of the approximation for this
parameter will be shown later.

Figures 3.14(a)-(d) show clearly that the approximation of the data
will be rough when there is little (a, b) or noisy data (a, c), while the
approximation is more accurate, when good (b, d) or much data (c, d) is
available. This is exactly what is expected from the stopping criterion.

Parameter sensitivity

The noise variance is used to determine when the approximator has to
stop adding more basis functions and can thus be used as a design pa-
rameter. The effect of different noise estimates is shown in figure 3.15.
The behaviour of the approximator is just as expected. The number of
key samples to approximate the relation increases from 8 via 13 and 14
to 832. Clearly, in the last case the method is fitting noise.

Dual targets

One of the motivations to construct a function approximator, was that
(Ls)svM had difficulties with samples with equal inputs but with differ-
ent outputs, see section 3.2. The behaviour concerning identical input
samples is evaluated by the use of data set 2. The results are shown in
figure 3.16. Inspections of the results show a good approximation. De-
pending on the estimated noise level, fluctuations that occur between
0.12 and 0.15 [m] are approximated or not. This shows the use of the
noise estimate as a design parameter.

Selected structure

The purpose of the last set of approximations is to test whether the sub-
set selection scheme adds the correct key samples so that an appropriate
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structure for the data is found. Data set 1 is used for the function approx-
imation with a variable number of training samples. The results are the
average of five runs. The noise level is kept constant at ¢ = 0.05.

In these approximations, we are interested in the structure only, not
in the parameters. Therefore, after completing the approximation, the
structure found is kept unchanged, and the parameters are retrained
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Table 3.1: Mean squared error for different numbers of samples

data size MSE nr. of indicators MSE opt
mean std mean std

100 377-1072 2.17-1072 10.8 1.9 0.101-1072

1000 1.68-1073 1.30-1073 19.6 15 0.376-1073

10000 428-107* 351-107%* 256 3.1 1.81-10~*

with a large noiseless data set using OLS. This results in the best possible
approximation of the relation for the structure found.

The Mean Squared Errors (MSE) of the approximations , as well as the
standard deviation of it, are given in table 3.1. Also the average number
of key samples and their standard deviations are given. The last column
gives the smallest MSE that can be found for the average number of key
samples. This optimum value is calculated by Matlab optimisation tool-
box. So, the optimal MSE for 10.8 key samples is 0.101-10~2. This value
is a weighted average of the optimal value for 10 and 11 key samples.

Based on the figures in the table, one can see that the selected struc-
ture can approximate the underlying relation better if more samples are
supplied to it. This is fairly obvious, because the method will only add a
new indicator if it is statistically relevant. If more data is available, more
indicators will be statistically relevant.

In the table one can also see that the difference between the approx-
imator and Matlab’s optimisation routine decreases if the number of
samples increases. So, it not only adds more key samples, it also adds
better key samples. There are two reasons for this: the possible struc-
tures of the learning mechanism are based on the samples; because there
are more samples, the number of possible structures increases. Second,
because more data is available, a better test can be made to see whether
a correct term is added to the structure.

3.5 Comparison

The different methods that have been discussed in this chapter will be
compared with each other to test their performance. This will be done in
two phases: first the approximators will be compared that are based on
the sVM methodology. All these methods use a limited set of samples
to summarise the data, and therefore a fair comparison can be made.
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The comparison will focus on the efficiency of data compression, the ca-
pability of approximating noisy data and the possibility to handle dual
targets.

Next, a set of experiments is performed to test the applicability of the
approximators on high dimensional input. Finally, computation time
and ease of use are compared.

3.5.1 Support-vector based methods
Data compression

The first comparison tests the errors that result by summarising all data
with only a limited set indicators. Indicators can refer to support vectors
or key samples for the remaining thesis. 2 000 training samples from the
first data set are fed noiseless to KSM, LSSVM, LSSVM+ and SVM. The
error is evaluated while growing or pruning the network. All the meth-
ods approximate the relation by a piecewise linear relation. Noiseless
data is used, implying that only the performance on data compression
is investigated.

In figure 3.17(a) the MSE of the different methods is given as a func-
tion of the number of indicator functions, while in figure 3.17(b) the
Maximal Absolute Error (MAE) is shown. The LSSVM+ and KSM out-
perform the SVM and LSSVM by far. If, e.g. an MSE of 102 is allowed,
KSM needs 22 key samples, LSSVM+ keeps 26 support vectors, LSSVM
requires 283 while SVM uses a total of 874 support vectors.

The LsSVM+ and KSM have a comparable MSE if only few indicators
are used; for a larger number of key samples, the KSM is much better.
The maximal absolute error for few support vectors is smaller for the
LSSVM+. These differences can be accounted for, because the LSSVM+
prunes those samples that will minimally increase the MAE, while KsM
includes the indicator that minimises the MSE.

The decrease of the error for LSSVM and LSSVM+ does not continue
above a certain number of support vectors. One would expect that if
there is no noise, more indicators will give a better approximation re-
sult. Investigation of the error shows that errors occur when two input
samples are located near each other. These similar samples will give
similar indicator vectors, resulting in near linear dependence in the in-
dicator matrix. This, in its turn, results in a bad numerical condition for
solving the parameter vector.

Commenting on the pruning mechanism of the LSSVM variants, we
can see that the pruning in LSSVM+ results in a significant diminished
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Figure 3.17: Data compression performance: the approximation error
for different methods as a function of the number of indi-
cators

approximation error. However, the cost for this is the increased compu-
tational load.

Note, that in general, the most relevant part of figure 3.17 is the area
with only a limited number of indicators; between 1 and 100 as regards
this example. These approximations do not require a lot of memory and
can cope with noise.

Noise handling

The second comparison will treat the noise handling ability of the meth-
ods. Noise corrupted data of data set 1 is used for the training, while
the noiseless function is used for validation purposes. The results of the
approximations are given in figure 3.18. In subfigure (b) it can be seen
that the KSM gives the best approximation on the validation set. More-
over, this small error is achieved with fewer key samples than the other
methods need for their minimum. So, KSM gives the smallest error for
the smallest number of indicators in this example. When the number of
indicators becomes large, KSM starts fitting noise.

If the statistical stopping criterion is used for KSM, the number of
indicators is found to be 25. This is indicated in figure 3.18(b) and is
near the minimal validation MSE that is found at 20 indicators. When
more key samples are included, the MSE grows, but the MAE decreases
until 93 key samples are included.

The MSE on the validation set of LsSSVM with both methods of prun-
ing is large, compared with the other methods, while the MAE of LSSVM+
remains small.
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Figure 3.18: Error on the approximation of data set 1 corrupted with
noise as a function of the number of indicators.

An interesting observation is that the MSE on the validation set of
SVM is smaller if there is noise corrupting the targets. This can be ex-
plained because the noise will form a ‘band” around the function that
has to be approximated. Because of this band, the insensitivity zone
will not make the approximation to cut the extrema, but makes it ap-
proximately coincide with the underlying function.

Double targets

The last in this set of experiments is the approximation of data set 2.
2000 randomly selected samples of this data set are used for validation
purposes. The result of the approximation is given in figure 3.19. Again
KSM gives the smallest MSE on the validation set for the smallest number
of indicators. However, if more key samples are included into the ap-
proximation, the KSM starts to fit noise. In this approximation the SVvM
gives the best results on the validation set measured in MAE.

The validation error of the SVM remains relatively small even for a
large number of indicators. Inspection of the approximation shows that
it fluctuates swiftly between the outer values of the insensitivity band.
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This behaviour is shown in figure 3.20. The approximation is given for
the smallest MSE on the validation set. Due to the double targets, there
is always a large error, making this fluctuation behaviour not clear in
the MSE of the validation set. This behaviour can be explained by not-
ing that all training samples outside the e-insensitive zone will become
support vector. If the gap between the ambiguous data is 2 or more,
then each sample becomes a support vector and tries to minimise its ap-
proximation error, resulting in the observed fluctuations. Because each



68 CHAPTER 3. OFF-LINE FUNCTION APPROXIMATION

=
&

output (y)

|
ot
W

input (x)

Figure 3.21: One-dimensional test function

support vector tries to minimise its approximation error, and there are
as much training samples as there are key samples, similar fluctuations
are found for LSSVM(+). The result of KSM for the minimal MSE on the
validation set is given in figure 3.20 too. This method is not sensitive
to ambiguous data, because KSM includes indicators that minimise the
MSE on the complete data set and stop including more indicators if the
inclusion is not significant anymore. Furthermore, the limited set of key
samples is trained by all the training samples, therewith averaging the
ambiguities, as if they are noise.

3.5.2 High input dimension

The comparison to test how the different methods deal with several in-
puts only compares the KSM with the MLP and the BSN. That the other
support vector based methods are not considered in this comparison is
because the set of functions for these methods is identical to KSM and
in the previous results it was shown that the KsM gave the smallest MSE
for a given number of indicators.

In this comparison the data is generated by a simple function so that
mainly the ability to handle more inputs is evaluated, and not so much
the ability to find a complex structure. For the same reason, no noise is
included in this approximation. The data is generated by the following
function:

ninp
y(x) = n~1 Y 2max(sin(37x;) — 3,0). (3.55)
mp ;=1

In this equation the subscript of x denotes the input number. The frac-
tion before the summation keeps the targets within the interval zero and
one. This function is plotted in 3.21 for one dimension.
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Figure 3.22: MSE for different input dimensions

Although this function is an additive combination of one-dimension-
al functions, the approximators do not have this information and ap-
proximate the function as one 7, dimensional function. So, although
the data can be approximated by an approximator that can only approx-
imate relations of the form:

§=2g1(x1) + &2(x2) + ... (3.56)
for this approximation the methods use the following form:
7=g(x1,x2,...). (3.57)

This is done because it is often unknown for realistic data sets whether
the underlying relation is additive. If the approximator does not have
access to this information, it should still be able to approximate it with
a reasonable number of structural elements.

The results for the different methods are depicted in figure 3.22. In (a)
the MSE of KSM is given, in (b) the MSE for the BSN is depicted. Only one
curve can be seen in in (b), because for more-dimensional input spaces,
the MSE is larger than 0.3. This is as expected because it was known
from previous work that the BSN suffers from the curse of dimensional-
ity. The curves in (c) give the MSE of MLP. Although these experiments
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are averaged over five runs, the result is still noisy. The approximations
found got often stuck in local minima.

In these figures the MSE is plotted as a function of the number of pa-
rameters. The number of parameters is used instead of the number of
basis elements to come to a more fair comparison. For the BSN the cen-
tres and the weights are considered parameters, for the MLP the weights
and for the KSM the inputs of the key samples and the Lagrangian mul-
tipliers.

Based on these figures it is clear that the KSM gives a smaller MSE
for nearly all numbers of parameters for the different input dimensions.
The MSE of KSM and MLP are nearly equal if only a limited number of
parameters is used. However, if more parameters are included, the MSE
of the KSM decreases more, while the MSE of the MLP remains of the
order of 107°. If more parameters are included, the MLP is more likely
to get stuck in a local minimum.

The ksM handles the increasing input dimension well. For a specific
MSE, the number of key samples increases with increasing dimension,
but not exponentially.

In this comparison concerning high dimensional inputs, the RBF ap-
proximators are left out. This is done because an RBF only has an influ-
ence in a certain region of the space which makes it prone to the curse
of dimensionality. This might be circumvented by altering the support
of the basis functions, but in initial approximations this approach nearly
always got stuck in local minima. Therefore, it was decided not to go on
investigating this approach.

3.5.3 Some notes on computation time

To get an idea of the computation time for an approximation, 2 000 train-
ing samples from data set 1, corrupted with additive Gaussian noise
with a variance of (0.2)2, were supplied to the different approximators.
Approximations were made with different number of indicators, while
the computation time and the MSE on the validation set were recorded.

Code is used for the different approximators that has been written
by different people, for different purposes. As a result, the degree of
computational efficiency differs. Therefore, the results obtained in this
comparison should not be used to draw conclusions, and are given for indi-
catory reasons only.

The calculations for SVvM were performed with LIBSVM (Chang and
Lin, 2003). This program implements an improved version of the SMO
algorithm (Keerthi, Shevade, Bhattacharyya, and Murthy, 2001). The
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calculations for KSM and LSSVM(+) were done with an self-written im-
plementation. This code was written for testing the ideas rather than
speed, and is therefore not optimised in terms of computational effi-
ciency .

In figure 3.23 the MSE is plotted as a function of the time needed to
find this approximation. The numbers within this figure indicate the
number of indicators for the resulting approximation. Note that the y-
and the x-axis are both logarithmic.

As of the large differences in the code, no conclusions can be drawn
based on this figure. However, some observations could not be refrained
from. The calculation time for the KSM grows approximately linear with
the number of key samples, while the calculation time of the SVM grows
above-linear. For larger numbers of indicators (# indicators > 500), the
current implementation of KSM became faster than the calculations for
SVM with LIBSVM.

The LSSVM starts with all the training samples as indicators and
then starts decreasing this number. Therefore, first the parameter vector
needs to be calculated with 2 000 elements. In order to arrive at this solu-
tion, a Cholesky decomposition had to be constructed in our algorithm.
For a 2000 x 2000 matrix, this takes considerable time, and therefore
the first approximation is only found after approximately 15[s]. After
this, the pruning starts. Although the KSM uses the same decomposi-
tion for its calculations, it starts with a 1 x 1 matrix, which grows by the
inclusion of each key sample. As a result, the calculation time for few
indicators is smaller for KSM than the calculation time for LSSVM.

An advantage of the growing and shrinking methods, is that they
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come to their final approximation by increasing or decreasing the num-
ber of indicators of the approximation. These intermediate approxima-
tions can be stored by which a whole set of models of different complex-
ity is obtained in one run. After this run, the user can select one of these
models appropriate for the task on hand, based on e.g. a validation set.
This makes the construction of a set of models by LsSVM and KSM much
faster than for MLP or SVM.

3.5.4 Ease of use

Although the criterion if something is deemed ‘easy to use’ depends on
personal preferences, some comments on this subject will be given.

The KsM makes use of the noise variance in the stopping criterion.
The noise variance, even if it is unknown, is a clear and intuitive mea-
sure to determine when to stop. The stopping criterion itself was found
valuable because it adapts the accuracy of the approximation to the qual-
ity and the quantity of the data.

In the experiments no use was made of the possibility to include a
priori indicators. This possibility is a valuable addition, because a rela-
tion known beforehand does not have to be estimated by the potential
indicators, thus decreasing the total number of indicators. The variance
on the estimate will consequently be smaller.

The possibility to select a kernel function makes all these methods
flexible in the relations they can approximate. The disadvantage of this
flexibility is that one has to select an appropriate kernel for the problem
on hand. If an inappropriate kernel function is selected, a large set of
data is required for the prediction. In chapter 5 practical considerations
concerning the selection of a kernel will be dealt with.

3.6 Review

This chapter started by treating several off-line function approximators
described in literature. From these approximators several ideas have
been combined to form a function approximator that better suits our
needs. The result is called the Key Sample Machine (KSM).

KsM uses limited samples of the training set to represent the full
training set. This idea is also used in the Support Vector Machine (SVM).
Because of this sample-based approach, the input space is not necessarily
divided into regions, as done by e.g. B-splines and Radial Base functions
(RBFs), and KSM is therefore less prone to the curse of dimensionality.
The samples that are used as summary of the data are called key samples.
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The interpolation between the key samples is done by a dual indicator
function, which is equal to the kernel function of SvM. Because of the
use of a kernel function, this method is not limited to only one type of
functions by which it can approximate the data, as is the Radial Base
Function Network (RBFN) and the Multilayer Perceptron (MLP).

In opposition to SVM, a quadratic cost function is used. This does not
inherently result in a sparse solution. In the Least Squares Support Vec-
tor Machine (LssvM), which also uses a quadratic cost function, a sparse
subset of training samples is found for prediction, by successively re-
moving those samples from the training set that have little influence on
the prediction. This pruning scheme omits valuable information due to
these removals. KSM uses a subset selection scheme to find the key sam-
ples that summarise the data set. However, all training data is used
to train the parameters corresponding to the key samples. Because the
subset selection is now an explicit step, a selection scheme that is ap-
propriate for the problem on hand can be used. In this thesis the for-
ward selection scheme is used. This scheme includes one key sample a
time until a good approximation is found. The calculation time remains
small, if the number of key samples remains small. A stopping crite-
rion has been introduced that tests whether the inclusion of an extra key
sample is statistically relevant. Only if it is, the key sample is included to
predict for new inputs. Because of the statistical test, the fitting of noise
is improbable.

The result of the above used ideas is that a function approximator is
obtained that uses a subset of the presented data to approximate all the
data, in which the accuracy of the prediction depends on the quantity
and the quality of the data. If there is more, or better, information, a
better approximation is obtained.

The subset selection scheme performed well and in the evaluation it
was shown that a suitable structure was found by which the data could
be approximated. The method did not fit the noise realisation, unless
the noise level was underestimated.

The use of the KSM is intuitive. There is only one design parameter
which is the noise estimate. This parameter trades a larger number of
key samples and an accurate prediction, with a limited number of key
samples and a rough prediction.

The implementation of this method is uncomplicated because many
algorithms known from linear algebra support the implementation. For
the expansion of the KSM with an extra key sample, the calculations are
done recursively and are not built up from scratch. These calculation
are treated in appendix B.1.

The comparison with the other support vector based approximators
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showed that, for the examples used, the KSM gave a better prediction
with fewer key samples. This was especially true if the data was cor-
rupted by noise. Because the KSM used fewer key samples, the compu-
tational load to obtain an approximation was less.

3.6.1 Concerning the problem definition

The function approximator has been constructed for the use of control.
The KSM should therefore comply with the conditions imposed on an
approximator for control.

Real-time constraints

The accuracy of the KSM increases by adding more key samples. If the
limitations on memory space or calculation time are reached before the
stopping criterion indicates that it is fitting noise, the addition of more
key samples can be stopped. This would result in a less accurate approx-
imation than would be possible, but it still complies with the real-time
constraints. The prescribed real-time constraints are therefore always
complied with. However, it was shown in the evaluation and the com-
parison that the number of key samples remained limited anyhow. The
number of inputs influenced the approximation of KSM, but the number
of key samples grows slowly compared with MLP and BSN for a given
accuracy.

Generalisation ability

The generalisation ability means that new inputs can be predicted well.
Based on the validation sets of the comparisons, it can be concluded that
the KSM generalises well as long as the noise estimate is not too small.
Even if the data offered is noisy, the KSM can extract data such that a
good prediction can be made for unencountered samples.

Comparison with other function approximators has shown that the
KSM is able to work with several inputs without any problem.

Based on these observations, the KSM is expected to work well as
part of a learning control scheme. In chapter 5, experiments will be
conducted to see if KSM meets these expectations.



Four

On-line function approximation

HE FUNCTION APPROXIMATOR in the previous chapter was used in
T an off-line setting; all the data, obtained in a separate training phase,
was presented in a batch and the off-line function approximator approx-
imated this data. The result of this approximation can be used in a con-
trol scheme.

In this chapter, a function approximator is developed that can be di-
rectly incorporated into a control scheme. From the moment the control
scheme starts its operation, this function approximator is supplied with
data. The approximator has to continuously enhance its approximation
of the relation underlying this data. Because the function approxima-
tor is included in the control scheme and has to adapt its approxima-
tion continuously, it has to be able to cope with a constant data stream.
Approximately each millisecond, for application in which we are inter-
ested, a new training sample is produced and should be processed. The
data stream is in principle endless, and hence it is not possible to mem-
orise all the samples.

KsM, as introduced in the previous chapter, cannot be used in this
on-line setting, because it requires all the data for the selection and test-
ing of a new indicator. However, the idea of summarising the data with
a limited subset gave good results and we would like to apply this idea
in an on-line approximation as well. The difficulty of implementing this
idea in the on-line setting, is how to find the set of key samples out of a
stream of data, without storing all the previous samples.

In order to come to a solution, the Generalised Least Squares (GLS)
and the Recursive Least Squares (RLS) methods are treated. Their the-
ory gives directions on how the key samples can be found and updated
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with a constant stream of data. The resulting recursive version of KSM
is treated in section 4.2. In section 4.3, this method is evaluated and in
section 4.4, it is compared with another on-line function approximator.
At the end of the chapter a review is given.

4.1 Background

411 Generalised Least Squares

Ordinary least squares as treated in the previous chapter, weights all the
samples equally for the final approximation. However, if the variance
of the additive noise is not the same for all the samples, or if the noise
is correlated between the samples, i.e. E(eeT) # 021, then the use of
the normal equations as stated in (3.7) will not give a minimal variance
solution, see e.g. (Bjorck, 1996). The generalised least squares method
is introduced to find a minimal variance solution when (3.4) does not
hold. This method assigns more weight to samples of which the vari-
ance of the additive noise is smaller. This weighting shall be used in the
recursive version of KSM.

By use of a linear mapping, the variance on all the samples can be
made equal, so that the normal equations can be used to obtain a min-
imal variance solution (Aitken, 1934). The relation between the targets
and the indicators is still given as:

y=Xb+e with E(e) =0. 4.1)
Contrary to (3.4), the variance is given as:
E(ee") = o?V. (4.2)

The diagonal elements of this matrix denote the variance of the noise
acting on the samples, while the off-diagonal elements indicate the co-
variance between the noise samples. The covariance matrix of the noise
is equal to the covariance matrix of the samples, due to the additive
noise assumption:

E((y—E)(y—E®)") = E((Xb+e—Xb)(Xb+e—Xb)")
= E(eeh). (4.3b)

So, off-diagonal elements in the variance matrix of the additive noise
also indicate that the corresponding targets are correlated.
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Because V is symmetric positive definite (Bjorck, 1996), there exists a
Cholesky decomposition PPT with P lower triangular so that (Stewart,
1998):

PPT = V. (4.4)
Pre-multiplying (4.1) with P! results in:

P ly=P !Xb+Ple (4.5)
In this transformed representation the additive noise is given as:

p =P le with E(yp)=0. (4.6)
The variance of the additive noise ¥ is calculated as:

E(pypT)

E(PleePT)
= P lE(eeh)P T
o?P~1PPTPT
= L

4.7)

So, by pre-multiplying Xb = y by P~1, the additive noise becomes un-
correlated and equal for all samples. The minimal variance solution of
this transformed problem can be obtained by the ordinary least squares
method. The minimisation problem is formulated as:

2
min HP*l(Xb - y)‘ , (4.8)
b 2
with the solution:
XTv-Ixp = xTv-ly. (4.9)

This is obtained by equating the derivatives of the minimisation with
respect to b, with zero.

The variance matrix V allows us to indicate which sample gives
more certain information. The inverse of this matrix is called the weight
matrix.

4.1.2 Recursive Least Squares

In order to make the approximator recursive, the concepts of RLS are
used. The RLS method updates the parameter vector by including a
new sample. The new sample is (x,y). This input induces an indicator
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vector f as described in the section 3.1.1. The normal equations (3.7)
hold before the inclusion:

(xTx) b = XTy. (4.10)

Including the information of the new sample into the matrices of (4.10)
yields:

] [eoeso -] an

in which Ab represents the modification to the parameter vector due to
the inclusion of the new sample. Performing the matrix multiplications
gives:

XTXAb + fT£Ab + X"Xb + fTfb = X"y + fTy. (4.12)
Substitution of (4.10) into (4.12):
(xTx + fo) Ab = £T(y — fb). (4.13)

For the calculation of Ab the inverse of (X'X + £Tf) should be known.
This inverse can be calculated, based on the inverse of (XTX) which is

known from before the inclusion of a new sample, see (4.10). With the
use of Woodbury’s formula (Golub and Van Loan, 1996):

A 1TfA 1

(A+fo)_1 — A TTEAIE

(4.14)

with
A= (XTX) : (4.15)

this update can be done without the calculation of a complete inverse.
The term y — fb is the approximation error that is made by the cur-
rent parameter vector for the new sample. This scheme is known as
RLS (Bjorck, 1996, Haykin, 1994; Ljung, 1999) and is closely related to
Kalman filtering (Ljung, 1999). A similar line of reasoning that is used
for RLS, is used to do the update calculations for the recursive KSM.

4.2 Recursive Key Samples Machine

In this section we propose a new on-line function approximator. This
method is the recursive version of KSM. In order to come to a recursive
version of KSM, two concepts are used:
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Figure 4.1: Inclusion of a new sample. The new sample can be repre-
sented by the present key samples (left path) or it can be used
to extend the data structure (right path)

e Assign a weight to each key sample to indicate the multitude of data
it represents.

e Make a newly supplied sample a key sample, if the current approx-
imation cannot represent it well enough. Otherwise, use it to fine
tune the current key samples.

These ideas are first illustrated by an example.

Example 4.1 (Inclusion of a new sample)

Refer to figure 4.1. Assume that there is already an approximation of previous
samples. This approximation is like the one introduced in the previous chapter
and given at the top of figure 4.1. The key samples represent a multitude of
samples, and a corresponding weight is assigned to the key sample. The key
samples are depicted as black dots and the diameter of these dots gives their
weight. The approximation is given by the dashed line.

A new sample becomes available and should be incorporated into this ap-
proximation. The new sample is indicated by the open dot. Based on some
criterion, the sample can become a key sample itself and is used in future pre-
dictions. Or, if the sample does not become a key sample, it should be used to
fine tune the other key samples. In the left path, the sample is predicted rather
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well by the current approximation and the approximation error is therefore as-
sumed to be caused by noise. Therefore, the sample is not included as a key
sample but it is used to fine tune the present key samples. The approximation
after the inclusion of this sample is shown at the bottom-left of figure 4.1. The
calculations for the update incorporate the weights. The weight after the update
of the three key samples is altered as well as their output, due to the inclusion
of the new sample. The previous approximation is indicated by the dotted line,
the updated approximation by the dashed line.

In the path on the right, the new sample cannot be predicted correctly by the
current approximation. If the approximation error is too large, with respect to
the noise level, the sample becomes a key sample. By this inclusion the struc-
ture alters, but the weights do not. This key sample is henceforward required
for future predictions. &

To implement the scheme shown in example 4.1, the following sub-
jects need to be treated:

e How can a weight be assigned to a set of key samples so that they
represent the full data set and so that the inclusion of a new sample
alters the approximation correctly.

e How can we update the set of key samples to incorporate a new
sample.

¢ When should a sample become a key sample.

In this section, these subjects are treated. The resulting algorithm is
given on page 100 as algorithm 4.2 .

4.2.1 Weighting of the key samples

A reduced set of key samples should represent a full set of data by
making use of weighting the key samples. For the calculation of these
weights a distinction is made between two sets:

Reduced set: This set contains only the k key samples.
Full set: This set contains all the training data.

As in the previous chapter, each sample induces a dual indicator func-
tion. Only the dual indicator functions of the key samples are used in
the actual approximation. Because the reduced set contains only these k
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key samples, the indicator matrix of the reduced set is given as:

filxasy) faxsy) - fielxis)
fl(xks,Z) fZ(xks,Z) fk(xks,z)

ks = (4.16)

fl(x.ks,k) f~2(x'ks,k) fk(x'ks,k)

Note that f;(xj) = fj(x;) because it represents an innerproduct of key
sample i and j in some feature space.

The indicator functions of the full set are equal to the indicator func-
tions of the reduced set, i.e. the same set of functions can be realised.
However, N training samples are included in the indicator matrix of the
full data set:

X=| i) fal) - Felx) |- @17)
A1) 20%g1) -0 fi(xks1)

LAGN)  faOv) o filxw)
In order to let the key samples represent the complete data set, a weight
is introduced so that the normal equations and the weighted normal
equations become identical. The weighted (4.9) and unweighted (3.7)
normal equations are repeated below for convenience sake:

X"Xb = Xy, (4.18a)

XLV IXb = XLV lyg. (4.18b)
V1 is the covariance matrix which is used in RLS for the weighting

of the samples. When the left-hand sides of the equations in (4.18) are
made identical, it follows that:

X'Xb = X[ V' Xb = V=X XXX, (4.19)

which gives a matrix that can be used for weighting the key samples.
The same for the right-hand side:

Xy = XLV lyi, (4.20a)
vis = VX X'y (4.20b)
= Xis(XTX) XXXy (4.20c)

= Xi(XTX)"1XTy. (4.20d)
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This makes the outputs of the key samples yy, equal to the prediction
of the full data estimator at the key samples.

It is interesting to see that by setting the weighted and unweighted
normal equations identical, the variance of the prediction for the weigh-
ted and unweighed approximation, as well as the predictions, are iden-
tical. The prediction of the full approximator is given in (4.20d). The
prediction of the reduced approximator is given as:

Fis (Xks) = Xisb. (4.21)

Substituting (4.18b) for b into this equation yields:

Tis(Xks) = Xis(Xigs V™ Xis) XV ks (4.222)
= Xis (XX) T XE X XXX s (4.22b)
= Yis- (4.22¢)

This is, as expected, equal to the prediction of the full approximation.
The variance of the full approximation for some input is (Draper and
Smith, 1998):

£(x) (xTx) T x)e?, (4.23)

and the same variance is given for the reduced approximation as:

£(x) (x{sv—lxks) £1(x)0?, (4.24)

which is identical for the calculated value of V in (4.19). So, identical
predictions and variances are found for the full unweighted data and
the reduced weighted data.

Example 4.2 (Calculation of weight matrix)

The data set that is used in this example is given in table 4.1(a). The inputs of the
key samples are xy51 = 0, xys» = 1 and the approximation is done by infinite
splines. The dual indicator function for infinite spline is given as:

fi(x) =14 min(x, xis ), (4.25)

see example 3.3. The indicator matrices follow from (4.16) and (4.17):
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Table 4.1: Data for the weight calculation

(a) Data for example 4.2 (b) Data for example 4.3
Xy Xy
0 1 0 1
0 2 02 2
1 3 1 3
1 4 1 4
[f1(x1) fa(x1)
fi(x2)  fa(x2)
X = |/ . 4.26
fi(xs)  falxs) (.262)
Lf1(xa)  fa(xs)
-1 + min(xl, st/l) 1 + min(xl, st/2) 11
_ |14 min(xp, xg1) 1+min(xp, xes0) | _ |11 (4.26b)
14 min(x3,xys1) 1+ min(x3, Xys2) 1 2’ ’
_1 -+ min(x4, st’l) 1 + min(x4, st/2) 1 2
and
X, — fl(xks,l) i2(xks,1):| 4.7
e {f 1(xks2)  fa(xks ) (4:272)

1+ min(xs 1, Xks,1) 14+ min(xgs 1, xks2) | _ 11 (4.27b)
1+ min(xks,Z/ xks,l) 1+ min(xks,zr xks,Z) 1 2] .

The value for the weight matrix and the key sample outputs follow from (4.19)
and (4.20d) as:

4 20 [05 0 15
Vo= {0 2| 'V=10 05| Y= |35/ (4.28)

This indicates that the two key samples are twice as important as a single sam-
ple. Or in terms of the variance matrix, the variance of the key samples is only
half that of each single sample. This is quite obvious, because the key samples
represent two samples with the same input. The key samples’ targets lie be-
tween the targets of the samples that they represent. &

Example 4.3 (Covariance in weight matrix)
A second example uses the data set of table 4.1(b). The same key samples are
used to represent the data. For this data set the following results are found:

1 164 016] [ 061 —0.048 124
Vo= {0.16 204"V =1|_0048 049 |'Ves= |353]" (4.29)
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Figure 4.2: Influence of the covariance on a key sample

In the covariance matrix the off-diagonal terms became non-zero. This means
that the key samples are correlated, which is caused by the fact that the input
of the second sample in the data set is in between the key samples. The result
of this covariance term in the matrix V1, is that if the first key sample target
increases due to future inclusions, the target of the second key sample decreases.

This effect is shown in figure 4.2 for a larger data set. There are three key
samples indicated by the open circles. First an approximation is made for the
gray samples. The approximation is given by the black solid line. The weights
of the key samples are correlated. A set of new samples is offered to the approx-
imator, which are indicated by the black dots. All of these samples are located
between 0 and 0.5. Due to these samples the left part of the approximation in-
creases. The required calculations for this update will be treated next. As a result
of the covariances in the weight matrix, the rightmost key sample will decrease
when the middle key sample is increased. The information of old samples is
incorporated in the weight matrix. &

Summarising: the weight matrix makes the normal equations of the
full data set identical to the weighted normal equations. As a result, the
prediction and the variance based on the full data set is equal to the pre-
diction and the variance of the weighted reduced data set. The diagonal
elements of the weight matrix give the importance of the corresponding
key sample. The off-diagonal elements of the weight matrix’s inverse
indicate the covariance between key samples. Due to this covariance,
an increase of the target of one key sample influences the target of the
other key samples. This makes it possible to omit training samples, be-
cause the information of this data is incorporated in the weight matrix
for future updates of the approximation.
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4.2.2 Growing and shrinking

This section deals with the calculations necessary for the updates of the
approximation. Three cases are considered separately:

Case 1) A new sample is represented by the key samples.
Case 2) A new sample becomes a key sample.
Case 3) A key sample is removed.

The calculations shown here are not efficient, nor are they numerically
stable, but they do show what happens. For a more efficient and numer-
ically stable implementation, see appendix B.

Fine tuning the key samples

The first case to be considered is when the offered sample does not be-
come a key sample and is therefore represented by the already present
key samples. This is illustrated by the left path of figure 4.1. Because
the same key samples are used to represent the data before and after the
update, only the weight and the key sample targets are altered by the
update.

The normal equations before and after the inclusion of the sample
should be identical to the weighted normal equations. The situation
before the inclusion is given as (4.18a), and is repeated here:

XTX = X[V Xy (4.30)

Because the key samples are kept equal, Xy, does not change. After the
inclusion, (4.30) has to hold for the updated matrices:

XTX = X[ VX (4.31)

A bar over a matrix is used to indicate that it is an updated matrix. Par-
titioning X as done with the calculations for the RLS results in:

XT 7] m = XLV X4, (4.32a)
—TyT -1 —TeTeyw—-1 _ -1

X XXX + X e = v (4.32b)

v x Teex ! = VL (4.32¢)

f is the indicator vector for the new sample. This update shows that the
updated weight matrix can be derived from the previous weight matrix.
This update, and all the coming ones are summarised in algorithm 4.1
on page 91.



86 CHAPTER 4. ON-LINE FUNCTION APPROXIMATION

This is an exact update. There is no difference if all the data is given
at once or if it is updated with this scheme, because no information is
lacking for the update (4.32).

Next to the weight matrix the key targets have to be updated. Before
the update, (4.20a) holds:

Xy = XL,V yye. (4.33)
This equation also has to hold after updating the matrices:
X'y = XL,V ¥ (4.34)

The updated matrices are denoted by a bar, and the partitioning of X is
reused. The updated target vector of the full data set is partitioned as
done with RLS, using y for the previous targets and y for the new target:

[XT £7] B’] = XLV Y, (4.35a)
X'y + £y = XV s, (4.35b)
X'y + £y = XL (TG + X IXTOG!) (s + Ay,
fly = 18Xy + £ X Ay + XTXX ! Ay,

X £ (y - ka’QYks) = VlAy. (4.35€)

The update is rendered in algorithm 4.1(a) on page 91. It shows that
there is an update for the key sample targets, but it is better to use the
implementation given in appendix B.

Example 4.4 (Updating the key samples)
Assume we have the approximation of the data of example 4.2. The weight
matrix and the key sample indicator matrix are given as before as:

11 _ 20 1.5
tem [ v =2 e . w39

The key samples are xi; = 0 and xso = 1. The new sample presented to
the approximator is (x,y) = (1,5). With this new sample, the weight matrix is
updated as:

V71

XX vl (4.37a)
117" 117" 20
- {1 2} 121 2}T{1 2} + {o 2] (4.37b)

20
= {0 3}. (4.37¢)
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which shows that the second key sample represents three training samples after
the update. The update of the targets for the key samples yield:

Xig £ (v — X lyi) = V'ay, (4.38a)

0 20

{1.5} = {0 3} Ayys, (4.38b)
0

Ayis = {0_5}. (4.38¢)

So, two key samples (xys1,Yks1) = (0,1.5) and (¥ys2, Yks2) = (1,4) with the
weight given in (4.37) represent the data. @

Adding a new key sample

The second situation that can occur is that the new sample cannot be
represented by the current key samples and should become a key sam-
ple itself. This is shown in the path on the right of figure 4.1. In this
case the number of key samples increases. Therefore, the key sample in-
dicator matrix is altered. Again, the weight equation (4.18a) before the
update holds:

XTX = XL,V Xy (4.39)

Because the number of key samples increases, the matrices grow. Intro-
ducing the updated matrices in partitioned form:

< X z| Xs f1] o1 [V v
R T R I A

in which ¢ = fi4 (¥ksk+1) = K(Xks k41, Xksk+1) is the value of the new
dual indicator function for the new key sample. z is a vector containing
the values of all the previous training samples with the new indicator
function and this vector is unknown. After the inclusion of the key sample
the relation equating the variances have to hold for the updated matri-

ces:
T T1T rv—1 T T
Xz | X z| |Xg f \" v Xks £ (4.41)
f o] |[f o | f o v v f ¢ ‘
As z is unknown, the value of v cannot be calculated. However, some

value of v should be decided on. The assumption used henceforward is
that v = 0. Due to this assumption, the update is not exact.
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Assumption 4 (Uncorrelated new key sample) The newly included key
sample is uncorrelated to the current key samples: v = 0.

In appendix C the implications of this assumption are treated. Without
loss of generality, we set v—! = 1.

If the key samples represent numerous samples, the diagonal ele-
ments of V~! are much larger than 1. This implies that the output of the
newly included key sample alters sooner than the output of the other
key samples. The necessary steps for this update are indicated in algo-
rithm 4.1(b). The target of the new key sample can be set freely; through-
out this thesis, the target of the newly added key sample coincides with
the target of the presented sample.

Omitting a key sample

Apart from the inclusion of a new sample into the approximator, as a
key sample or not, there is also the possibility to omit an existing key
sample from the set of key samples. This can be useful because due to
the inclusion of new key samples, old key samples can become super-
fluous. When we omit these, the matrices will be smaller, resulting in
less computation time and memory requirements. Without loss of gen-
erality, we assume that key sample k is omitted.
Before the omission of the key sample (4.18a) again has to hold:

XTX = XL VX (4.42)

After the update this equation has to hold for the updated matrices. The
matrices before the removal are partitioned as follows:

X=[X z], X = {XF ﬂ v mTl Vvl]. (4.43)

Note that the partitioning of X and Xy, already contains the matrices
that will result after the removal of the key sample, i.e. X and X make
use of X and Xj,. This can be done, because the elements of the indi-
cator matrices do not alter because of to the removal. However, in the
partitioning of V!, the matrix V~! cannot be found. This is because
the weights of the remaining key samples do alter due to the removal, as
the calculations will show.

Substituting the partitionings of (4.43) in (4.42) and investigating the
upper left block after the multiplications gives:

XX = XEW X + £V X + XEvE + T 1f, (4.44)



4.2. RECURSIVE KEY SAMPLES MACHINE 89

This equation holds before the update. After the omission of the key
sample the updated version of (4.42) has to hold for the updated matri-
ces:

XTX = XLV Xy (4.45)
Substituting the right-hand side of (4.44) into (4.45) gives:
XLV Xy = XEW Xy + £IvIX + XL vE+ fTv71,  (4.46a)

v = WX v+ X+ X v L
Before the update the weight matrix for the remaining key samples was
equal to W—!, while after the update the weight matrix is given as V1.
In the equation above, it can be seen that these are not equal and that
the weight of the remaining key samples alter due to the removal of a
key sample.

Next to the update of the weight matrix, the key targets should get
an updated value. Before the update, the following holds:

Xy = X[ V7 ly. (4.47)
Rewriting this in partitioned form gives:
< T
o 1T [Xes ] W71 v t

Investigating the upper block of this matrix equality after multiplication
gives:

XTy = XEW 1t 4+ vt + XL v + £1v . (4.49)

This equation holds before the omission. After the omission, (4.47) has
to hold for the updated matrices:

X'y = XL,V 1y (4.50)

Just as the weight update can be calculated, so can the change in the
output of the key samples. Substituting the right-hand side of (4.49)
into (4.50):

XtV 1916 = XEW lt+ vl + XL vy + vy, (451a)
Vit + VAt = Wt X vt + vy + X £ vy, (4.51b)
V1At = Ve T X F v s — (V=W =X e,

V1At = (v+ X v Dy — (vEX ]+ X TEVIVEX Dt
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Figure 4.3: Removal of a key sample

with yys = t + At. The update algorithm described in appendix B gives
a faster update. Both updates are given in algorithm 4.1(c).

Example 4.5 (Omitting a key sample)

Let us illustrate the use of this weight update by the omission of a key sample.
The training data is plotted in figure 4.3. The underlying relation consists of two
straight lines. The data is approximated by key samples at x51 = 0, Xy = 1
and xys 3 = 0.5, which are connected by lines. The indicator and weight matrix
as well as the key targets are given as:

138 0 88 —0.01
LZVI=10 169 93|,ys= | 201 |. (452)

88 93 33.0 1.49

In this X follows from the choice of the key samples, while the values of V1
and yy4 are determined by the supplied training data. The resulting approxima-
tion is shown by the gray dashed line in figure 4.3. The key samples are shown
by open dots.

We decide that the key sample xs3 = 0.5 is omitted from the set of key
samples. By the use of algorithm 4.1(c) the new matrices become:

o [11] 1 [309 173] _ _ [0.26
Xis = {1 2} V= {17.3 34.5] ks = {2.24} ' (4:58)

The resulting approximation is shown by the black solid line in figure 4.3. The
new key samples are indicated by black squares. It can be seen that the approx-
imation after the omission incorporates the information of that key sample into
the weight of the other samples, so that no information is lost. This update is
exact. @
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Algorithm 4.1: Update of weight matrix and key sample indicator ma-
trix for inclusion or omission.

Given: Xy, Xis, Yis, V! and a new sample (x, )
1. form f
2: solve XESI =T forl
3 V5ievilgnn
4 Yis < V(yis +1(y —1"yis))

(a) Inclusion of sample, set of key samples unchanged

Given: X, Xis, Yis, V™! and a new sample (x, )

1: form f

2 ¢= fk+1)((x) a
3: st — il;s 14)
£V e [Vo (1)]
o= ']

(b) Inclusion of sample, set of key samples extended

Given: Xy, Xis, ykS,‘fi1
1: form f for omitted key sample
. -1 W71 v
2: partition V7" — T 1
Xis T
£ ¢
Yks}

3: partition Xy — {

4: partition yys — [ v
5: solve XESI =T forl

6 VI Wlpwl4vlT 11T

7: Yks — V(vy + vy — (vl + lv’llT)ykS)

(c) Omission of a key sample, set of key samples reduced
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4.2.3 Selection criteria
Selection of a key sample

Whenever a new sample is inputted to the learning mechanism, it should
be decided whether this sample can be approximated by the current set
of key samples, or if it should become a key sample itself. To test this,
we test the same hypothesis as for the off-line approximation: ‘a; = 0./
Again, if this hypothesis is rejected, the corresponding sample becomes
a key sample.

If the new parameter is equal to zero, then is the difference of the
summed squared error before and after inclusion is x% distributed:

s? 2

e SO 0. (4.54)
Remark that the error reduction cannot be tested on all the samples be-
cause old samples are not stored. However, it can be calculated what
the weighted change is at the key samples plus the residual of the newly
supplied sample. Because the key samples are used as representatives,
this weighted error change is used to represent the change in error of the
processed training samples. The probability that a certain realisation of
the error reduction is found, if the new parameter is zero, is calculated
as follows:

2
In (4.55) ¢ denotes the probability that a realisation of z; or larger is
found.  is called the significance level and the corresponding value of z;
follows from the x7 distribution. If the probability for the found error
reduction is too small, then the hypothesis is rejected and the sample
becomes a key sample.

Alike to the off-line inclusion, the significance ( is not considered as
an extra parameter that has to be given a value, because the effect it has
on the inclusion of a sample can also be obtained by altering the noise
level.

With the inclusion, we assume for the sake of implementation in ap-
pendix B, that the new key sample enriches the structure, so that its
target can be approximated:

Assumption 5 (Structure enhancement) When a sample becomes a key
sample, the structure is enhanced such that the new sample can be exactly ap-
proximated with the new structure.
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Omitting a key sample

If a key sample becomes superfluous it can be omitted to save mem-
ory space as well as computation time. This is of special interest in the
on-line setting because the calculations have to be done within a sam-
ple period. Furthermore, fewer parameters result in less uncertainty of
the remaining parameters. A two-step approach is used to find the key
samples that can be removed:

1) Find the key sample that gives the smallest error increment after
omission.

2) Test whether this error increase is acceptable.

This two-step approach is decided on, because the second step takes
considerable computation time. By this two-step approach, these com-
putations only have to be performed for the key sample that gives the
smallest error increment. First the key sample that will cause the small-
est error increase will be located.

In Hassibi and Stork (1993) a pruning method called Optimal Brain
Surgeon (OBS) is introduced. In their paper the change in the summed
squared approximation error is calculated as a function of the parameter
change. These calculations can be used to calculate the error change if
an element of the parameter vector is set at zero. The error change as a
function of the parameter change is approximated by a Taylor series:

T

AE = (%) Ab + 1AbTHAD + O(||Ab|]?). (4.56)
In this equation, H is the Hessian matrix of the summed squared ap-
proximation error with respect to the parameters. Hassibi and Stork
(1993) assumed that the approximation is in a (local) minimum, so that
the first term on the right hand side equals zero. Furthermore, the con-
tributions of the third- and higher-order terms are neglected. This re-
sults in:

AE = JAbTHAD. (4.57)

Equating one of the elements of the parameter vector with zero, is the
same as omitting it. This can be expressed as:

17Ab +b; = 0, (4.58)

in which 1; denotes the identity vector with a 1 at the i location and all
other terms equal to zero.
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We want to find the difference for the parameter vector that min-
imally increases the error, under the condition that one parameter el-
ement becomes zero. This is done by forming the Lagrangian for the
minimisation of (4.57) with constraint (4.58):

L = 1Ab"HAb + a(1]Ab + b;). (4.59)

Differentiation of this Lagrangian with respect to Ab and « yields:

% = HAb +a1; =0, (4.60a)
A (4.60D)

This can be written in matrix form:

o) 1] =5 as

The block matrix inversion lemma (Kailath, 1980) is used to obtain the
following results:

. biHilli .
Ab = AE=

1

b}

(4.62)

The computational load to calculate the inverse of the Hessian as well
as the Hessian itself, is considerable.

A simplification of this scheme is given in Cun et al. (1990) in a
scheme known as Optimal Brain Damage (OBD) in order to avoid the
calculation of the inverse. This scheme assumes that the Hessian is a di-
agonal matrix which simplifies the calculations for the error increment:

AE =~ Lb? [H],

m*

(4.63)

N—

Also if the Hessian is diagonal dominant, this is a reasonable approxi-
mation.

Both OBD and OBS were constructed for pruning in artificial neu-
ral networks. This means that the first derivative of the error surface
with respect to the parameters is only zero if the parameters in the net-
work have converged. In a LS or RLS setting, the weights have always
converged, and therefore these schemes can be used in an on-line fash-
ion (Leung, Wong, Sum, and Chan, 2001). This makes them a good
starting-point to use it as a pruning scheme.
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The Hessian for the least squares setting is straightforwardly calcu-
lated. The approximation error is given as:

e=y—y=y—Xb, (4.64)
from which the summed squared error is derived:
ele= (y' —b'X")(y — Xb), (4.65a)
=y'y + b™X"Xb — 2y"Xb. (4.65b)
Differentiation with respect to the parameter vector yields:

dele

=5 = —2XTy + 2XTXb, (4.66a)
0%ele T
s = 2XIX=H. (4.66b)

The first equation (4.66a) is equal to zero due to the normal equations,
while the second gives the Hessian. Further differentiation would result
in a zero vector, which makes the error change of (4.57) exact in the least
squares setting. Including the Hessian of (4.66b) into (4.62), gives:

b7

AE= 4[(XTX) 1)

(4.67)

An interesting interpretation of this equation is found if it is noted
that the term ¢%(XTX) ! is the covariance matrix of the parameter vec-
tor (Draper and Smith, 1998). The parameter value divided by its uncer-
tainty is proportional to the test whether the hypothesis ‘b; = 0" can be

rejected. If this hypothesis is considered the null hypothesis, then it is
rejected with a significance of ( if:

b?

Here, z; and  are coupled by a x?-distribution. So, omitting the pa-
rameter that has the smallest error increment is the same as omitting the
parameter which is most likely to be zero.

Instead of dividing the parameter value by the uncertainty of the
parameter, a second possibility to select a candidate for omission, is to
divide the parameter value by the uncertainty of the key sample:

b?
i = arg min —= i=1...k 4.69

11
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in which i becomes the candidate key sample to be omitted. Although
this ratio is no longer directly related to the error increment, it has the in-
tuitive interpretation that the key sample which has not much influence
and which only represents a small number of samples, can be omitted.

Furthermore, this alternative test is motivated by reasons of both nu-
merical stability and calculation speed. If there are highly correlated
indicators, then the condition number of the matrix XTX is bad. This
makes division by the inverse of the diagonal elements prone to numer-
ical problems. The certainty of the key samples is not explicitly deter-
mined by the values of the indicator vectors, but by the samples that
they represent. Therefore, nearly dependent indicators do not neces-
sarily pose a problem. Experimental results confirm this. For an arbi-
trary data set of 5000 training samples, the condition number of X' X is
x ~ 1017 while for V it is around 100.

The second reason to use the variance of the key sample is due to
the calculation speed. The covariance matrix tends to be diagonal dom-
inant, especially if limited samples are supplied. Therefore, the same
assumption can be made as was made for OBD, giving the following
selection:

i = argmin b> [V~ 1];;. (4.70)

1

This minimisation can be done fast, because V! is known.

However, apart from the calculation speed and the numerical sta-
bility, it is of course important that a correct key sample is selected for
omission. Or at least a key sample that gives an error increment that is
near the minimal error increment. Experiments that used the selection
mechanism of (4.70) showed that key samples were selected that gave
an error increment close to the minimum. This is illustrated by the next
example.

Example 4.6 (Selection of candidate for removal)

A piecewise linear approximation of data set 1 is made by KSM. After the ap-
proximation, the different omission schemes are compared. Refer to figure 4.4.
The black dots correspond to the error increment calculated by the OBS scheme
for the different key samples. The dark gray dots denote the approximate error
increment found by the OBD omission scheme. The light gray dots correspond
to the arguments of (4.69) and (4.70), which are nearly on top of each other. For
ease of reference, these selection mechanisms are called RKSM ©PS and RKSM ©FP
respectively. Based on this figure several remarks can be made:

e The approximation of RKSM %5 by RKSM BP looks good. The lines nearly
cover each other. For this example the matrix V™! is diagonally dominant.
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Figure 4.4: Importance calculated by different pruning schemes

e The OBD should give an approximate of the error increment. But in this
example the difference between OBS and OBD is significant. Inspection of
the Hessian shows that it is not diagonal at all.

e All the selection mechanisms find the same candidate key sample.

Because of the small computational load, the numerical stability and
the observations that it selects good omission candidates, the selection
criterion of (4.70) is used from now on.

The location of the candidate key sample was the first step of the
two-step approach. By the use of (4.70), the increase in the error is no
longer known. However, in the implementation given in appendix B,
the error increase is available just before a key sample is omitted. It can
be tested whether this error crosses some bound before the key sample
is actually omitted.

4.2.4 Some tools

There are some techniques that are often used in practise and that can
be incorporated into this scheme.

Forgetting

If the behaviour of the supervisor is time-variant, the samples that were
supplied to the approximator in the past lose significance. To incorpo-
rate this, a forgetting mechanism can be incorporated into the approx-
imator, see e.g. (Haykin, 2002). This forgetting means that old samples
are of less significance than new samples. In RKSM this result can be
achieved by multiplying the matrix V~! with a constant between zero
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and one. The prediction is not altered due to this, but due to the de-
creased weight, the prediction can more easily be adapted by new sam-
ples.

When the function is changing too fast for the forgetting factor used,
problems arise. Instead of altering the parameters in this case, the struc-
ture is modified. This happens because the new sample is thought of as
an unlikely occurrence for the given structure, resulting in a non-zero
parameter, i.e. a structure adaption. The use of the forgetting mecha-
nism is illustrated in section 4.3.5.

Even if the function is not time-variant, a (time-dependent) forget-
ting factor is a good method, to indicate that the structure in the begin-
ning of the approximation is premature, and should not get too much
significance. As key samples selected in the beginning of the approx-
imation would represent a large multitude of data, its weight is con-
siderable. However, due to the premature structure in the beginning,
the targets of this key sample might contain flaws. Introducing a (time-
dependent) forgetting factor acknowledges that this premature struc-
ture might not be correct, and is therefore uncertain. In Schaal, Atkeson,
and Vijayakumar (2002) time-dependent forgetting is also used to ac-
count for the incorrect structure in the beginning of the approximation.

Regularisation

The ridge regression scheme (Hoerl and Kennard, 1970) can be applied
in this setting without problems. This regularisation scheme minimises
the norm of the parameter vector. In section 2.1 it has been argued that
this is the same as including the a priori knowledge that the parame-
ters are likely to be zero. The regularisation parameter determines how
certain one can be of this.

Whenever a new key sample is included, and therefore a new pa-
rameter, the regularisation has to be applied to this parameter. This can
be done by introducing an extra sample to the approximator that has
the same input as the new key sample, but the target of which corre-
sponds to the current prediction. This makes the parameter of the new
key sample go in the direction of zero, just as done by ridge regression.
The weight of this regularisation sample can be equated with the regu-
larisation parameter.

(Near) singularity

The inclusion of a key sample of which a copy is already there, makes
the matrix X4 singular and should therefore not be done. Also, if a
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key sample is included that is close to another key sample in the feature
space, this would make the matrix X4 nearly singular. This gives rise
to errors in the parameter vector. Therefore, next to testing whether a
key sample should be included because the current structure cannot be
correct, we should also test if the inclusion significantly improves the
structure.

To test whether the new key sample is significantly different from
previous key samples, the residual after the projection of the new dual
indicator vector on the current indicator vectors, can be investigated. If
this residual is too small, it means that the indicator vector induced by
the new key sample, can be nearly written as a linear combination of
the present indicator vectors. It is user-specified when the residual is
considered too small. However, if it gets near the numerical precision
of the computer, it is certainly too small. This test is a byproduct of the
addition of the key sample to the set of key samples and does not take
any time. The implementation can be found in appendix B.

The test for significant contribution can also be used to limit the
number of key samples by not including key samples with a small resid-
ual. This is illustrated in section 4.3.4.

Next to the test if the inclusion of the key sample makes the indicator
matrix of key samples Xy nearly singular, a test should be done to see
if the matrix X{, V~!Xys becomes nearly singular by the addition of the
new key sample. This test checks whether the new key sample supplies
enough information to the weighted key samples.

The complete algorithm for RKSM is given in algorithm 4.2. The ob-
jective of this algorithm is not to show all the necessary calculations, but
to show how the different parts are put together. For the implementa-
tion details, see appendix B.

4.3 Evaluation

Before the introduced function approximator is compared with other
methods, some of its properties are evaluated. Different aspects of the
approximator are treated.

4.3.1 Information extraction

The goal of the first set of function approximations is to test the ability
of the on-line function approximator to extract the required information
from a data stream.
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Algorithm 4.2: Recursive Key Sample Machine algorithm

Given: X, Xis, Yis, V™! and a new sample (x,y)

form f based on x

calculate prediction for this input

if parameter unlikely to be zero (4.55) then
include as key sample (algorithm 4.1(b))

else
fine tune key samples (algorithm 4.1(a))

end if

find candidate for omission (4.70)

calculate error increment (4.67)

if error increment is small enough (pg. 172) then
omit key sample (algorithm 4.1(c))

end if

O PN DN

_=
N 2o

This is tested by offering different amounts of data to the approxi-
mator and investigating the approximation error as well as the number
of key samples required. The results are compared with the results of
the off-line approximation. This comparison is made to see if the on-line
approximator can extract the same information from the data stream as
the off-line approximator can from the complete data set. Three cases
are considered:

Case 1) The significance level for testing the hypothesis whether a key
sample should be included, is the same for the on-line and off-line
approximator as is the noise level. This situation is created in or-
der to investigate the differences between the inclusion schemes for
key samples. The inclusion scheme determines which samples be-
come key samples, and is therefore of importance to understand the
differences between the on- and off-line approximators.

Case 2) In order to test whether the on-line method extracts the cor-
rect key samples from the stream, the number of key samples is
made the same as the number of key samples in the off-line approx-
imation by altering the significance level. Altering the noise level
instead would have had the same effect.

Case 3) The significance levels of on- and off-line approximation are
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Figure 4.5: Case 1: on-line and off-line approximation with equal inclu-
sion significance, no pruning

equated again. The number of key samples for the on-line approx-
imation are now equated to the number of key samples for the off-
line approximation by the pruning mechanism. The allowed error
before a key sample is omitted is selected so that the number of
found key samples becomes equal for both methods.

The first case sets the significance for the rejection of the hypothesis,
quite arbitrarily, for both at 8%. The estimated noise variance is equated
with the true noise variance which is (0.05)? and the approximation is
made by a piecewise linear approximation. The results are averaged
over ten approximations. The validation error is calculated, based on
10000 noiseless samples. Different numbers of training samples were
inputted to the off-line approximator for which the performance was
determined. The performance of the on-line approximator was tested
after it processed this number of samples. The average result for the
approximations for different amounts of data is given in figure 4.5.

The first thing that stands out is the difference of key samples be-
tween on- and off-line approximation. In the on-line approximation the
number of key samples keeps growing fast and more key samples are
found in the end. The number of key samples for the off-line approx-
imation grows slowly. This behaviour can be explained by the inclu-
sion mechanism of the approximators: both methods use a statistical
test to find out if a sample should becomes a key sample. In the off-line
approximation the test checks if the inclusion of the sample will have
a statistically significant error reduction of the complete set of samples.
However, the inclusion of a key sample in the on-line approximation
is based on the weighted change in the key samples plus the residual
of the newly supplied sample. If the residual of the new sample is too
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Figure 4.6: Case 2: on-line and off-line approximation with approxi-
mately equal key samples, no pruning

large, it is included. As a result of this inclusion scheme, samples with
a large realisation of noise will be included as key samples. This will
result in a growth of the number of parameters if more samples are sup-
plied, as observed in figure 4.5(a). The fast growth of the parameters
is not acceptable when applied in a control setting, because of the lim-
ited resources. Therefore, two mechanisms are tested hereafter to limit
this growth: adapting the significance level with fixed noise level, and
pruning of superfluous key samples.

Although it might be expected that the approximation would be bet-
ter for the off-line approximation, it is found in figure 4.5(b) that the
on-line approximation has a smaller validation error. This can be ac-
counted for because we see that the number of key samples in the on-
line approximation is much larger. With these extra key samples, more
freedom is obtained for the approximation and therefore, the compari-
son is not fair. In the next approximation, the number of key samples is
the same, to test which approximator selects a better set of key samples.

The real danger of including more key samples is overfitting. If more
and more key samples are included, one might start fitting noise. The
MSE on the validation set for the on-line approximation rises slightly for
a large number of supplied samples, which can suggest that overfitting
occurs.

In these approximations, both methods converge rapidly to an ap-
proximation with a validation MSE below the variance of the noise, given
by the dotted line.

In order to test whether the on-line method can extract the correct
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key samples from the stream, the number of key samples is approxi-
mately made the same as the number of key samples in the off-line ap-
proximation by altering the significance level. The noise level is kept
fixed. The validation errors and the numbers of key samples found for
this approximation are given in figure 4.6. Only the on-line approxima-
tion is altered.

It is clear that if both methods can select the same number of key
samples, that the off-line method gives a smaller validation error. This
is as expected, because it can use all the data in the selection scheme.

The MSE on the validation set is no longer smaller than the variance
of the noise. Furthermore, it can be observed that the growth of the
number of key samples is much slower. The same reason as before,
large noise realisations, make the growth continue.

In the third case, the significance of the hypothesis testing for the on-
line approximation is again set at 8%. However, the pruning mechanism
is activated in this set of approximations. It omits those key samples that
have a limited influence on the approximation. The acceptable error
increment when omitting a key sample is chosen in such a way that
approximately the same number of key samples is found as for the off-
line approximation.

The results of the approximation with the pruning are given in fig-
ure 4.7. Although the off-line approximation still has a smaller MSE for
the validation set the performance of the on-line approximation is good.
This shows that by omitting the useless key samples, a good set of key
samples is found. Both the on- and off-line approximator come to a ap-
proximation of which the MSE is smaller than the variance of the noise.

Still a small growth is observed. It is expected that the number of
key samples stabilises if more samples are supplied, because the key
samples might be included due to a large noise realisation, but if they
are not required for the structure, they will be omitted in time.

4.3.2 Noise level

Although the comparison with respect to the off-line setting shows that
the on-line approximator is capable of extracting correct key samples
from a data stream, further tests have been performed to show explicitly
some of its properties.

In this set of approximations 5000 data samples from data set 1 are
supplied to the approximator with different noise variances. This data
is approximated by a piecewise linear function. Within this set of ap-
proximations, the noise level is assumed to be known, so that we can
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Figure 4.7: Case 3: on-line and off-line approximation with key sample
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Figure 4.8: Approximation of RKSM for different noise levels

concentrate on how the method handles different noise levels. The sen-
sitivity to the estimate of the noise level will be treated next.

The approximation results for different noise levels are given in fig-
ure 4.8. The standard deviation of the noise is given for each figure, as
well as the resulting number of key samples. Based on these figures, the
following remarks can be made. For this and coming function approxi-
mations, the significance level is set to 8%.

First, if there is less noise, a better approximation can be made. The
less noise there is on the targets, the more key samples are included
by the selection scheme and therefore a more precise approximation is
obtained. More key samples can be included because the good quality
of the data makes the approximator less prone to fit noise.

Second, by adjusting the precision of the approximation to the noise
level, only few key samples are found for large noise levels. As a result,
the method is not prone to overfit the data.
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Figure 4.9: Sensitivity of RKSM for different noise estimates

The last observation that can be made is that the fast fluctuations
for small input values are approximated, even if the noise is significant.
This is because these fluctuations are distinguishable from the noise for
the noise levels given.

4.3.3 Sensitivity for noise estimate

The noise variance is often unknown and therefore an estimate has to be
made use of. The effect of an incorrect estimate of the approximation is
shown in figure 4.9. In (a) the estimated standard deviation is twice the
real standard deviation while in (b) the estimated standard deviation
is half the true noise standard deviation. As in the off-line approxima-
tion, this estimate determines the precision by which the data is approx-
imated. If the noise is overestimated, the approximation is rough, if
underestimated, too many key samples are added, resulting in a noisy
approximation.

4.3.4 Regularisation

In the previous test it was shown that if the noise was underestimated,
too many key samples are included, resulting in a noisy approximation
as shown in 4.9(b). In this figure, the true noise level is 0.05 and the
estimated noise level is 0.025. By assuming that the approximation is
smooth (assumption 3), we know that this noisy approximation is incor-
rect. In order to obtain a smoother approximation, the ridge regression
scheme is used. The result of this regularisation is given in figure 4.10(b).
Directing the parameter to zero, does not have a smoothing effect on
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Figure 4.11: Approximation with large regularisation parameter (A =10)

the approximation as can be seen in the figure. The approximation even
worsens!

Investigating what happens if the value of regularisation parameter
is selected large (A = 10) gives insight in why this approximation is not
smoothed by the ridge regression scheme. The approximation with the
large regularisation parameter is given in figure 4.11. In this approx-
imation nearly all the offered samples become key samples, while the
approximation of the data stays the same after the inclusion of the first
key sample.

In this approximation the first key sample is included without regu-
larisation because it is unknown in what direction we like to pull it. This
approximation is not yet a good approximation of the data. A follow-
ing sample is therefore not predicted well, and the inclusion mechanism
includes this sample as a key sample. However, due to the large regu-
larisation, the target of this key sample is made (nearly) the same as the
current prediction and the prediction does not change. This is in contradic-
tion with assumption 5. So, future data is not approximated any better.
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Figure 4.12: Structural regularisation

This inclusion continues for future samples and because nearly all sam-
ples are included as key samples, no samples are left to alter the key
samples.

If the regularisation parameter is given a smaller value, a similar
behaviour is found, though less extreme. The key sample’s target is
made to approach towards the previous approximation, so that it does
not lead to the required improvement. Therefore, more samples are in-
cluded because of the large error. This is the effect underlying the neg-
ative influence of this form of regularisation in figure 4.10: so, the ridge
regression scheme is not a good option for this approximation scheme.

An alternative regularisation scheme acts on the structure. This way
of regularisation allows a sample to become a key sample only if it passes
the selection criterion (4.55), and if it contains sufficient information. The
scheme that was introduced in the previous section to avoid near singu-
larities can be used to accomplish this. The result of this regularisa-
tion form is illustrated in figure 4.12. The approximation for figure 4.12
uses approximately a third of the key samples that were required for
figure 4.10. Due to the use of fewer key samples, the approximator be-
comes less noisy. However, the danger of this technique is that fast fluc-
tuations can no longer be approximated, as seen for small input values.

4.3.5 Time variant functions

In order to test the ability to approximate a time-variant function, a new
data set is constructed. In this data set the sample number is of influence
on the relation between the in- and output. The function from which
samples are drawn is given as:

1

i
yi = (1 + —) sin . +e. (4.71)
2N xi+01(1- o)
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Figure 4.13: Approximation of a time-variant function

In this equation N is the number of samples and i is the sample number.
For this evaluation, N = 10 000. This function is plotted in figure 4.13(a)
for i = 0 and in figure 4.13(b) for i = N. x; is generated with a uniform
distribution between zero and one and is independent of the sample
number. The output is corrupted by additive Gaussian noise with a
standard deviation of 0.05, denoted by e.

The data is approximated with and without forgetting. The forget-
ting factor was set at 5- 103, which was found found after a few tries.
The results of these approximations are shown in figure 4.13. It can be
seen that the approximation scheme with forgetting is able to follow the
time variant function so as to find the final function, while the scheme

without forgetting tends to accept old samples of equal importance, giv-
ing an incorrect approximation.

4.3.6 High-dimensional input

The last test that is performed is to see how RKSM reacts when higher-
dimensional data is provided. The data is generated from the function
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Table 4.2: Growth of number of key samples due to increase of input

dimension
input #key MSE
dim. samples
1 16 2.05-1074
2 29 2.74-1074
3 47 3.51-1074
4 66 6.34-1074
5 89 7.72-1074
introduced in section 3.5.2:
1 Ninp
y(x) = ) 2max(sin(37x;) — 1,0). (4.72)
Minp ;=3

In this equation the subscript of x denotes the input number. Although
this function is an additive combination of one-dimensional functions,
the RKSM does not have this information and approximates the function
as a Nipp-dimensional function.

The approximation is made for different input dimensions. For each
approximation 20 000 samples were supplied to the approximator and
the results presented in table 4.2 are the average of five runs. Although
there is no noise corrupting the targets, the noise estimate is given some
value. If this was not done, all samples would become key samples due
to the division by zero in (4.55). The pruning mechanism is used, as
well as the forgetting mechanism. The forgetting mechanism is used to
enforce some uncertainty to the preliminary structure.

From this table it is clear, that if the input dimension is increased, the
number of key samples grows slowly. To get a similar MSE as found in
table 4.2, a similar number of key samples is required in the off-line ap-
proximation. In figure 4.7 it was also found that the number of key sam-
ples is similar for the on- and off-line approximation, so it is expected
that they handle higher-dimensional input spaces similar.

The MSE of the validation set grows slowly. This can be explained
because the same amount of data is used to train a larger number of key
samples. Therefore, the variance of these key samples is larger (Draper
and Smith, 1998).
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4.3.7 Some notes on computation time

To get a notion of the time that is required for an approximation, 10°
training samples from data set 1 are approximated with different noise
estimates. Due to the different noise estimates, different numbers of key
samples result. The computation time required is given in figure 4.14.
As with the off-line calculation time, the code used was developed to
test the ideas and has not been optimised for speed.

In this figure, it can be seen that the calculation time grows approxi-
mately linearly with the number of samples processed. The slight above-
linear growth can be explained by the inclusion of more key samples if
the number of processed samples increases. The calculation time for
10° samples with 110 key samples is approximately 90 [s]. This gives an
average calculation time per processed sample of 90 [ps], which is well
within the sampling period of a controlled mechanical system of our
interest.

44 Comparison

The evaluations of the previous section showed the general properties
of the RKSM, but it is interesting to see how this method functions when
compared with other on-line structure-adapting function approxima-
tors. The number of function approximators that recursively adapts the
parameter as well as the structure is fairly small. Most of the methods
that are capable of this, are the so-called ‘lazy’-methods. They are called
lazy because they store all the data and do not make a prediction until
a prediction is required (Aha, 1997; Atkenson, Moore, and Schaal, 1997;
Uysal and Giivenir, 1999). However, because they store all the data,
they cannot be used in a control setting in which an endless stream of
data is presented.
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Figure 4.14: Computation time as a function of the number of samples
processed. Different number of noise estimates are used.
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The only method found that does not store all the data and alters its
structure as well as its parameters is Locally Weighted Partial Regres-
sion (LWPR) given in (Schaal et al., 2002). This method is a continua-
tion of previous work of the same authors, see e.g. (Conradt, Tevatia,
Vijayakumar, and Schaal, 2000; Schaal and Atkeson, 1998; Vijayakumar
and Schaal, 2000). Because this method is only used for comparison rea-
sons, the method will be treated concisely.

4.4.1 Locally Weighted Partial Regression

The idea of LWPR is to make a set of low-order models which are re-
sponsible for the approximation of the data in a limited region of the
input space only. The parameters of these local models are updated by
a recursive least squares (RLS) scheme. The contribution of each local
model to the prediction is determined by an activation function, e.g. a
Gaussian function. The weighted sum of the outputs of the local models
determines the actual prediction. This activation level also determines
the level of adaption of the local model when a new sample is supplied
to the approximator.

The activation function of the local models as well as the parameters
of the local models are altered by the supplied data. In the case of the
Gaussian activation functions, the spread matrix — a spread matrix is
used because we are working in an n-dimensional space — is altered
by the samples to indicate the region of activity. The result of this is
that in regions where more local models are needed to approximate the
data, more models will be present. Furthermore, if a low-order model
can describe the data in a large part of the space, only one model will
describe the data in that part of space.

The adaptation of the activation region for the local models is done
with a gradient descent method. Therefore, the convergence of regions
is not as fast as the convergence of the parameters of the local models.
In order not to converge to delta-like activation functions at training
samples, a cross-validation scheme is used in the update.

Due to the alteration of the regions, it might happen that a region of
the input space is not covered by a local model, or that too many local
models cover it. If a new sample is supplied to the method and it is
found that the summed activation of all the local models at that location
is below some threshold, a new local model is inserted. The activation
region of the new model is centred at the location of this sample, and
the spread is set at some predefined value. The value of the new spread
has a significant influence on the behaviour of the approximator.
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Next to the detection of too little activation in a certain region, it
is also tested whether there is too much activation in certain regions.
If so, a pruning mechanism is activated in order to save memory and
computation time.

An advantage of the use of the local low-order models, is that there
is an abundance of literature on this topic and the knowledge developed
for least squares can be used. In (Schaal et al., 2002) the projection pur-
suit idea is incorporated in this scheme, making it applicable for use in
high dimensional spaces.

4.4.2 Data extraction
Data set 1

The first set of function approximations is on data extraction. This tests
whether the methods are capable of finding the specific relation under-
lying the data. The two data sets introduced in chapter 1 are used for
this comparison. As with the comparison with the off-line approxima-
tion, the number of supplied samples is increased and the number of
required parameters and the validation error are recorded. The data of
example one is corrupted with noise with a standard deviation of 0.01.

Ridge regression is not used in either method, nor is there a limit set
to the closeness of the key samples or the equivalent measure in LWPR.
Because the structure is gradually built up, a preliminary structure is
found in the beginning. A forgetting factor is used to prevent this initial
structure from having too strong an effect on the final approximation.

The RKSM approximates the data by a piecewise linear function. The
correct noise variance is used. The LWPR locally uses a linear approxi-
mation which is weighted by a Gaussian kernel function so that a smooth
function is obtained. No noise estimate is required for LWPR.

The result averaged over ten runs is depicted in figure 4.15. Please
note that all axes are in logarithmic scale except the number of parame-
ters. In (a) the number of parameters is given. For each local model the
LWPR needs four parameters: centre and spread of the activation func-
tion; bias and slope of the local model. For each key sample in RKSM,
only two parameters are needed: the input value of the key sample and
its target. This difference is incorporated in the figure. The black line is
used for RKSM while the gray dashed line is for LWPR.

In this example the RKSM outperforms the LWPR. The MSE on the
validation set is 5 to 50 times smaller while only one fifth of the param-
eters is required. The LWPR has great difficulties in finding the correct
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Figure 4.15: Comparison for RKSM and LWPR on data of data set 1

Table 4.3: MSE and number of parameters on data set 2

LWPR RKSM
Dinit MSE # param Oest MSE # param
103 3.7 160 1 4.0 42
10+ 34 520 0.8 39 137
105 3.2 1560 05 42 396

structure for the fast fluctuations. This is explained by the iterative re-
finement of the region in which each local model is active.

Data set 2

The second test on data extraction is performed on the data of example
two. The first 10000 data samples were used to train the approxima-
tors, while the last 5000 were used to calculate the validation error. No
regularisation is applied. The results of these approximations are given
in table 4.3, while the actual approximation for the smallest MSE on the
validation set is plotted in figure 4.16. In the table Djy;; stands for the
initial size of the created regions.

It shows clearly in 4.16(b) that for position values around 0.19 [m],
the approximation of RKSM fluctuates swiftly to approximate the sam-
ples at both sides of the ‘gap.” This behaviour is due to the addition of a
key sample whenever the weighted key sample change plus the residual
of the new sample is too large for the current structure. If due to some
effect other than noise, the targets show some ‘gap’, then the residual
of the new sample will be large, resulting in the inclusion of it to the
set of key samples. Although some of these key samples are omitted
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Figure 4.17: Approximation with structural regularisation

by the pruning mechanism, wild jumps are found in the approximation.
Increasing the noise estimate avoids this behaviour, but this also limits
the precision by which the data can be approximated.

The performance of the approximation by RKSM can be increased
by applying structural regularisation. Because of the regularisation, the
noise estimate can be decreased so that a more accurate approximation
is found. The before-mentioned fluctuations will not occur, because key
samples too close to each other are not allowed. With regularisation the
noise estimate could be chosen much smaller than before as gest = 0.4.
The MSE on the validation set was found to be 3.5 with a total of 130 pa-
rameters. This approximation is shown in figure 4.17. Note that in the
data there are fluctuations at 0.19 [m] so that these should be approxi-
mated.

The approximation with LWPR gives a marginally smaller MSE on
the validation set using many more parameters. LWPR forms a linear
approximation locally and is therefore less hindered by the dual targets.
The fluctuations that are shown in 4.16(a) are less if the initial size of the
regions is larger, but this also results in a larger validation error.
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Although the RKSM is capable of handling the double target, it can
only do this by incorporating a form of structural regularisation. LWPR
can inherently cope with them.

4.4.3 Noise handling

Next it is tested how well these methods handle the noise corrupting the
targets. The RKSM uses the noise level explicitly in order to avoid over-
fitting and it is therefore expected that large noise variances will give
bigger validation errors. In contrast with this, the LWPR does not use
the noise level explicitly. LWPR adapts the regions of activation based
on leave-one-out cross-validation and the noise variance is expected not
to have a large influence on the approximation.

Because the LWPR had difficulties in finding the data generated by
the function of data set 1, a slowly fluctuating sinc-function is used for
this experiment:

sin(25x; — 12.5)

Yi= W + & (4.73)

The input samples x; are taken from a uniform distribution between
zero and one. The sinc-function is plotted in figure 4.18.

The variance of the noise is varied in this set of approximations to
see its effect. The MSE as well as the number of parameters are recorded
as a function of the number of samples offered. The RKSM approximates
the data by a piecewise linear function. The correct noise estimate is
used.

In LWPR the initial size of the local models is changed so that a good
estimate is found within the 10000 samples that were presented to both
methods. The results are averaged over ten runs.
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Figure 4.20: Influence of different noise levels for LWPR

In figure 4.19 the results for RKSM are shown, and in figure 4.20 for
LWPR. As expected, the validation error of RKSM depends on the noise
level and larger noise levels result in larger validation errors.

The results of LWPR show that the noise level is of minimal influence
on the validation error. The validation error does not decrease if the
noise level is smaller, nor does is increase if the noise level is larger.
This can be explained because this method does not include a new local
model if the error is too large, but if a region is not covered anymore.

Based on the trace of the MSE of LWPR it looks as if the approximator
has not yet converged to its final approximation. Training with 10° sam-
ples corrupted by the smallest noise variance, gave an MSE validation
error of 1.0-107° with 236 parameters. It actually fluctuation slightly.
The same MSE was found after 1000 iterations by RKSM.
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Both methods handle noise in the targets in their own way. This ex-
plains the differences found in these experiments. The LWPR adds and
removes regions depending on the coverage. The coverage is little in-
fluenced by the noise on the targets. However, in RKSM the noise plays
an important role in the selection criterion. The influence of the noise,
is that for large noise levels the LWPR comes to a better prediction; but
with moderate noise levels, the RKSM comes much faster to good ap-
proximations.

4.5 Review

In this chapter, a recursive version of the key sample machine has been
developed. This function approximator is called Recursive Key Sample
Machine (RKSM). The RKSM is able of updating its parameters on-line,
as well as altering its structure. Evaluations and a comparison showed
that the approximator behaves as required, giving a good approxima-
tion with little parameters, thus making it potentially applicable for con-
trol.

The Key Sample Machine (KSM) has been made recursive by imple-
menting two ideas:

e Assign a weight to each key sample which indicates that the key
sample represents a multitude of data.

¢ Expand the set of key samples if the parameter of the new key sam-
ple is unlikely to be zero.

The calculations necessary to implement these ideas, are recursive. The
update for the weights of the key samples due to a new sample is exact.
This means that there is no difference in the weights calculated based
on all the samples, or calculated by updating for each new sample. Re-
moval of a key sample from the set of key samples is also exact. How-
ever, the addition of a sample to the set of key samples is not exact. This
update cannot be made exact, because the sample previously supplied
would be required, and they are omitted. Therefore, it is assumed that
the new key sample is uncorrelated with the current set of key samples.
This is however, not true, but the best option available in our opinion.
Evaluation of RKSM showed that it was capable of selecting a correct
set of key samples from the continuous data stream. The MSE of the
on-line version was nearly equal to the MSE of the off-line version. This
has been realised by including an omission scheme that omits key sam-
ples that have become superfluous. These results suggest that the omis-
sion of superfluous key samples should be included for off-line KSM
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too. Because the validation error of the approximators are nearly the
same for equal key samples, the handling of high-dimensional input
spaces is also nearly the same. The on-line approximation can handle
high-dimensional input spaces just as well as the off-line approximator.

Similar to KSM, the approximation is dependent on the quality of the
data. If the noise variance is low, the approximation is precise, while
for a large noise variance, the approximation is rough. However, if the
noise level is underestimated, the approximator starts fitting noise. The
ridge regression scheme is not capable of reducing this noisy approx-
imation, but by means of structural regularisation, the number of key
samples can be limited, which results in a smooth approximation. A
disadvantage of this regularisation scheme is that fast fluctuations can
no longer be approximated.

With the use of a forgetting mechanism, time-variant functions do
not pose a problem.

In a comparison with Locally Weighted Partial Regression (LWPR), it
was found that RKSM converged much faster and gave a good approxi-
mation with much fewer parameters. However, LWPR was better capa-
ble of handling ambiguous targets. RKSM could get a nearly equal MSE
as LWPR for a data set with ambiguous targets, but this was achieved by
means of structural regularisation, while LWPR handled double targets
inherently.

4.5.1 Concerning the problem definition
Real-time constraints

The accuracy of the approximation increases if more key samples are
added. The time for the prediction and the memory requirements can be
limited as in the off-line approximation: stop including more key sam-
ples if the resources are depleted. After the omission of a key sample, a
new one may again be added.

The calculation time for an update might become longer than a sam-
ple period. Therefore, the calculations for update should not be done in
the real-time loop to avoid problems. For this reason, not all the sam-
ples supplied to the approximator might get processed, but because of
the endless data stream and the high correlation between consecutive
samples, this is no problem. It is unlikely that samples on a particular
situation repeatedly are omitted, because the motion performed is not
repetitive.
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Generalisation ability

The evaluation showed that RKSM is comparable to KSM as regards gen-
eralisation. The number of inputs, nor the ability to generalise seem
to pose problems. The experiments in the next chapter show whether
RKSM is really applicable in control.






Five

Real-time control experiments

HE FUNCTION APPROXIMATOR has been developed to be used in a
T learning control setting. In this chapter it is tested whether the
RKSM is capable of storing information so that the learning controller
can decrease the tracking error. The experiments will mainly focus on
the influence of the function approximator in the control setting. As in
previous work the function approximator was the bottle neck to extend
the feedforward controller to more inputs, special attention is given to
high-dimensional input spaces.

Before we describe the experiments, the setup of the learning con-
troller is treated. The LFFC scheme introduced in chapter 1 is repeated
in short in section 5.1 and is extended to include phase-corrected LFFC
(De Kruif and De Vries, 2003b). In section 5.2 the design of the different
controllers and filters to be used on the Tripod are treated, as well as the
settings for the function approximator. The experiments are described
in sections 5.3 and 5.4. At the end of the chapter a review is given.

5.1 Learning Feedforward Control

A learning control scheme is only useful, when the behaviour of the
plant is not fully known. If the plant has been identified completely,
then this information can be used directly and no learning is required.
Because the behaviour of the Tripod is not known accurately, a learning
controller is useful. The information that is deduced by the learning
controller may be used for future controller design.

121
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Figure 5.1: Learning FeedForward Control scheme

5.1.1 Traditional Learning Feedforward Control

The control scheme that is used to test the function approximator is
Learning FeedForward Control (LFFC) (De Vries et al., 2001; Otten et al.,
1997; Starrenburg et al., 1996; Velthuis, 2000; Velthuis et al., 1998). How
this method uses an approximation of the state-dependent effects to
compensate for them, was treated in chapter 1. The block diagram of the
LFF control scheme is repeated in figure 5.1. After learning, an approxi-
mation of f is present in the block LFF. The inputs to the approximation
are the states commanded (r) instead of the true states (x). In order for
the compensation to be effective, the output of the approximator with x
used as input, should be close to the output with r as input. This means
in practice, that the state-dependent effects should be smooth and that
the controlled system should follow the states commanded well.

However, before the LFF can make a prediction to compensate for
the state-dependent effects, it has to form an approximation. In order
to learn the relation f(x), the function approximator needs samples that
represent it. Direct approximation of f(x) is not possible because the
states x, as well as the disturbance signal d, are generally not available.
Similar to the situation for prediction, the states commanded are used
instead of the true states to learn this relation.

In the literature on LFFC, the feedback signal ug, is used as estimate
of the disturbance signal d and is therefore used as target for the learning
mechanism. The transfer function from the signal d to the feedback sig-
nal ug, is calculated, omitting the arguments for notational convenience,
as:

Ugp Ccp
d  14CP’

(5.1)

In this derivation it is assumed that the disturbance signal is decoupled
from the plant, which is allowed if f(x) is smooth enough. When CP >>
1, which is generally the case in the lower-frequency range, this transfer
function is nearly one. However, for higher frequencies, the transfer
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function is smaller than one and there is a phase lag, assuming that the
plant and the controller are proper.

As shown in Velthuis (2000), a phase lag diminishes the performance
of the LFFC and can even lead to instability. If the phase shift of the
transfer function (5.1) becomes larger than 90°, and the feedback signal,
ug, is used as approximation of the signal d, then the estimate for com-
pensating the disturbance does not decrease the influence of the state-
dependent effects, but it will increase the influence. Refer to figure 5.2.
In this figure a path is travelled with a constant velocity and the distur-
bance signal as well as the estimate of it are recorded as functions of the
position. The LFFC controller learns the estimate d as a function of the
position. If this estimate is used to counteract the state-dependent effect,
the difference between the state-dependent disturbance and its estimate
is bigger than the original disturbance signal, resulting in growth of the
tracking error. This undesirable growth is shown by the dotted line in
figure 5.2.

5.1.2 Phase-corrected Learning Feedforward Control

As the phase shift causes the tracking error to increase, an other estimate
of the the disturbance signal d was sought for (De Kruif and De Vries,
2003b). Instead of using the feedback signal, a filtered error signal was
used. This is similar to what is done in ILC (Arimoto et al., 1984; Long-
man, 1998, 2000; Moore, 1992). The transfer function from the distur-
bance signal to the error signal is given as:

e P
U‘E“HCP'

(5.2)

The inverse of this transfer function gives the disturbance signal, based
on the error signal. The inverse of U is referred to as the learning filter
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and is given as:

d
L=u'= - (5.3)
However, before this learning filter can be used to obtain a disturbance

estimate, the following should be noted:

1) If U(s) contains zeros in the right half plane and is causal, then its
inverse has poles in the right half plane and is therefore unstable.

2) Since both P(s) and C(s) are usually proper, U(s) is proper. There-
fore, L(s) is not proper, resulting in amplification of high frequen-
cies.

3) U(s) is uncertain, especially for higher frequencies, which makes
L(s) uncertain.

The first of these items can be coped with by the Zero Phase Error Track-
ing Control (ZPETC) method of Tomizuka (1987). This method gives a
stable inverse of a discrete plant, and compensates for the phase shift
that is caused by the uncancelled zeros. The result of the ZPETC algo-
rithm on a proper plant is a transfer function with a negative delay;, i.e.
it is anti-causal and future samples are needed for its estimation. In an
on-line control setting there is no future information. Hence, it is not fea-
sible to apply this learning filter to learn at the current commanded state.
However, instead of trying to update the approximator for the current
commanded state, it is possible to update the feedforward controller for
the commanded states several time steps in the past, because for these com-
manded states several steps into the future are known. Delaying the
update makes the filter causal.

The phase-corrected LFFC scheme is shown in figure 5.3. In this
figure the solid lines denote the control signals, the dashed lines the
learning signals. The learning signals are delayed so that the anti-causal
learning filter L can be implemented; the control signals are obviously
not delayed. Signals without argument are signals as a function of the
time £.

In the figure two low-pass filters Q are included. The first filter, Q1 is
included to counteract the amplification of noise at high frequencies and
to deal with the uncertainties of the plant model. When the model of the
plant does not agree with the true plant’s behaviour, which is likely to
happen for higher frequencies, the disturbance estimate is wrong. This
incorrect information should not be incorporated into the approxima-
tion and therefore it is suppressed by the use of a filter. This filter coun-
teracts the problems described in points 2 and 3 in the list given above.
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Figure 5.3: The phase corrected LFFC scheme

The second low-pass filter, Qy, is merely a safety measure. The dis-
turbance estimate gives the estimated disturbance that is still acting on
the plant. The true disturbance signal is already partially compensated
for by the feedforward controller and therefore the output of the func-
tion approximator should be added to the estimated disturbance. Q»
is included to counteract possible glitches. The bandwidth of this filter
can be much larger than the bandwidth of filter Q;.

In figure 5.3 the delays of the reference states are also indicated. z~*
is slightly abused to denote the delay operator. These delays cause the
delays of the learning filter, /, and the low-pass filter, g, also to be per-
ceived by the state. Therefore, the disturbance estimate and the states
commanded are equally delayed and can be used to learn the state-
dependent effects.

5.1.3 Experiment

In De Kruif and De Vries (2003b) the phase-corrected LFFC scheme is ex-
perimentally compared with the traditional LFFC. Only the result of this
comparison is given in this thesis to show the difference in performance
of these learning schemes. For more information on the experiment, we
refer to the paper.

The experiments were done with a single linear motor, which was
not connected to additional structures as are the linear motors of the
Tripod. The dominant effects in a linear motor are:

Cogging: This effect originates from the attraction between the perma-
nent magnets located in the stator and the coil’s iron core located
in the translator. The attraction force depends on the position of
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Figure 5.4: Control setting for one linear motor with additive state-
dependent effects; the control setting exploits additive prop-
erty by using three one-dimensional feedforward controllers
(parsimonious LFFC)

the translator and to counteract this force, a position-dependent
compensation-force should be learnt. The position is therefore re-
quired as input.

Friction: Friction mainly depends on the velocity of the translator rel-
ative to the stator. However, due to possible curvature of the linear
guides, the friction also depends, to some extent, on the position.
The friction force can be predicted largely if the velocity is known
and can thus be compensated for.

Unknown mass: The mass relates the acceleration and the force.

The state-dependent effects were assumed to be additive and each de-
pend on only one state, see figure 5.4. With this assumption, the effect
of cogging and friction can be compensated for by a set of indepen-
dent learning feedforward controllers with only one input. This setup
is known as a parsimonious learning feedforward controller (De Vries
et al,, 2001) and illustrated in figure 5.4. As the function approximators
only had to approximate a relation based on one input, a BSN was used.

The tracking error at the end of the motion is given in figure 5.5. In
this figure, the dashed gray line gives the tracking error for the tradi-
tional LFFC and the solid black line for the phase-corrected LFFC. Based
on this result, it can be seen that the fast oscillations, due to the cogging,
are much better compensated for by phase-corrected LFFC. However, a
slowly fluctuation error remains. This error is due to position depen-
dent friction. The linear guides are not exactly straight, so, apart from
the velocity, the friction depends on the position. This effect cannot be



5.2. IMPLEMENTATION FOR THE TRIPOD 127

'S
S

‘4 — LFEC

N ,1 ntnp — ph. corr. LFFC

Tracking error [um]
o

|
IS
S

100

Nel
O

Time [s]

Figure 5.5: Tracking error of LFFC and phase corrected LFFC

counteracted if only effects depending on one state are compensated
for. The use of a learning feedforward controller that compensates for
higher-dimensional effects is considered in the remainder of the chapter.

5.2 Implementation for the Tripod

There are several state-dependent effects in the Tripod that can be com-
pensated for by the learning mechanism. Which inputs are required to
compensate for these effects is first investigated. After this, the feedback
controller and the filters are designed.

5.2.1 Inputs to feedforward controller

Only those effects can be compensated for, which the feedforward con-
troller can predict by its inputs. Effects that are dominantly present in
the Tripod are the dynamic coupling between the motors and the mo-
tor characteristics treated in section 5.1.3. The inputs required for the
motor characteristics are treated before. However, the mass that one
specific motor has to move, depends, for the Tripod, on the location of
all the motors. By incorporating both the acceleration in the feedfor-
ward controller and the positions of the other motors, the force required
to accelerate the motor can be learnt

In order to compensate for the coupling between the motors, the
feedforward controller needs to know the acceleration as well as the
position of the other moving motors.

Which inputs were actually used depended on the experiment that
was carried out. Experiments were carried out with a varying number
of motors moving. Commanded states of motors that are not moving,
are not necessary as input. Furthermore, some inputs may not have
a considerable predictive power and could be omitted without giving
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a significant error increment. Different possibilities were tried and for
each experiment the used inputs are given.

5.2.2 Feedback controller

The state-dependent effects are assumed to be compensated for by the
learning element. The goal of the feedback controller is therefore not
to guarantee performance, but to create sufficient reference-following
capabilities for the commanded states to be used for learning and com-
pensating for the state-dependent effects. A SISO feedback controller is
developed for each motor. These feedback controllers should be robust
enough to cope with the state-dependent effects which are considered
disturbances. For the design of the feedback controller, the behaviour of
each motor is modelled as a moving mass:

P(s) = —. (5.4)

The ZPETC algorithm limits the possible feedback controllers for this
plant. This algorithm forms the learning filter by calculating a stable
inverse of U(s). However, if the transfer function U(s) contains poles in
the origin, the inverse is undetermined. This means that the controller
cannot contain an integrator. A PD-controller is therefore chosen for the
control of each motor.

The transfer function of the controller is given as:

sTg+1

(5.5)
Based on the (estimated) mass of the motor together with a given band-
width, the 74 and the K}, are calculated such that the maximal phase shift
occurs at the 0 dB crossing of the modulus of the loop transfer function,
and that this crossing is at the specified bandwidth. The bandwidth
of the controlled system was increased, until it almost started oscillat-
ing. The resulting closed loop bandwidth of the controlled system is
46 [Hz|. The peaks of the complementary sensitivity and the sensitiv-
ity are at 17 and 25 [Hz| respectively. The RMS of the tracking error for
the PD-controller is about 175 [um] for a motion similar to the motions
that were commanded in the experiments. The values for the parame-
ters were K, = 8.09-10% 74 = 8.43-1072. B was selected to be 0.1. A
bode plot of the sensitivity function and the complementary sensitivity
function are given in figure 5.6.



5.2. IMPLEMENTATION FOR THE TRIPOD 129

10

R N

I, S

= N

o~ ~

@ =8|
-40 . . - T

100 10t 10 10%

Frequency (log) [Hz]

Figure 5.6: Bode plot of (complementary) sensitivity function

5.2.3 Learning filters

To determine the learning filter L, the plant as well as the controller
have to be discretised. The discretisation of the plant was done in such
a way that the output values of the discretised model were identical to
those of the continuous model at the sampling moments (Astrém and
Wittenmark, 1997):

Pz = (1-z7HzL,! (@) (5.6a)
2.—1 -1
= (1-z71 (%) (5.6b)
Tz l(1+z7Y)
= i (5.6¢)

In this, T stands for the sampling time, £, ! for the inverse Laplace
transform, Z for the z-transform and m for the mass. The PD-controller
was approximated in discrete time by using the Matched Pole Zero meth-
od of Franklin, Powel, and Emami-Naeini (1994). This results in:

1—az!
7] .
Cz) =Kpay— =1 e (5.7)
with
1 _
Kpa = Kpr—l, w=c7/% and = T/E%, 68)
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Figure 5.7: Learning control scheme for motor 1 of the Tripod

Applying the ZPETC method to the discretised function U(z~1) (5.2) re-
sults in the learning filter L(zfl) (Van Dijk, Tinsel, and Schrijver, 2000):

=L(z _1)

d_

e

( (1—zH(1 -z~ )+2Kpdz_1(1+z_l)(1—ocz_1)) (1+z71)
4T2(1 —yz71)

22

(5.9)

The 22 at the end of the equation shows that the errors two time steps in
the future are needed to calculate the disturbance estimate now. In order
to implement this filter, the update of the function approximator has to
be delayed by two time steps. The delays of the signals are included in
figure 5.7, in which the control scheme for one of the motors is depicted.
In this figure the r; represents the reference signals of motor number 7,
z~2 denotes the delay due to the learning filter. The second delay, z=9/2,
is to compensate for the delay introduced by the low-pass filter.
The low-pass filters Q1 and Q; are implemented as FIR-filters:

y(k) = b(0)x(k) + b(1)x(k —1) + ...+ b(O)x(k — O). (5.10)

The coefficients b have been calculated to implement a low-pass filter
with an optimal frequency response in a least squares sense (Schlicht-
hérle, 2000). This results in the following coefficients:

b(l N > we sin(7wei)

0
R 11
TWei 2’ G-11)

, for i=-—

in which i is the coefficient number, O the order of the filter and cw. the
normalised cutoff frequency. The order of the FIR-filter has to be even
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Figure 5.8: 150!-order low-pass FIR filter Q; with w, = 50 [Hz]

for this design. The frequency response of this filter for a 150%-order
filter (with 151 coefficients) as well as the magnitude of its coefficients
are given in figure 5.8. In the control setup the cut-off frequency of Q1
was w¢1 = 50 [Hz], for Qy w.» = 300 [Hz] and the order for both filters
was 150.

A FIR filter was used because of its exact linear-phase frequency re-
sponse (Schlichthérle, 2000). A linear-phase frequency response means
that the filter implements a pure delay. Consequently, the inputs to the
feedforward controller can be delayed with the same amount, as shown
in figure 5.7. As both the target and the input of the function approxi-
mator are equally delayed, the function approximator learns the correct
relation. The order of filter Q; and Q, should be the same, otherwise
the feedforward signal is not added to the disturbance estimate at the
correct time. Figure 5.7 shows the control scheme for one motor.

5.2.4 Function approximator settings

With the control scheme fully specified, some settings of the function
approximator have to be decided on. The same settings are used for the
on- and off-line function approximators, where applicable.

Set of functions

First, the set of functions with which the learning mechanism has to
approximate the data is selected. This is done by choosing a dual in-
dicator function. As the relation that is sought is unknown, an indi-
cator function that can approximate a broad set of functions should be
used. Therefore, splines are used for the approximation. The order of
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the spline is selected to be one, so that a piecewise linear approxima-
tion is found. The advantage of this is that the calculation time is little.
This dual indicator function for a one-dimensional input is given, see
example 3.3, as:

fi(x) = 1+ min(x, x;). (5.12)

This dual function will result in a non-smooth approximation. The dual
indicator function for a second order spline, which is smoother, is (Vap-
nik, 2000):

fi(x) =1+ xx; + $xx;min(x, x;) — £ min(x, x;)%. (5.13)

To restrict the calculation time, the first order spline is used. Instead of
splines, B-splines could be used to approximate the data. This option is
not used because of their local support, the extra calculation time and
an equivalent set of functions the B-splines describe. The same holds for
the indicator functions that are given in Girosi, Jones, and Poggio (1993)
which result in piecewise linear functions. Although the set of functions
they can describe, are equal, transient behaviour can be different.

In order to construct to a multi-dimensional kernel of (5.12), the
product of the uni-dimensional kernels can be used (Vapnik, 2000):

Ndim

filx) = I—{ fi(a). (5.14)
i

The corresponding set of functions is the tensor product of the co-ordi-
natewise basis functions (Vapnik, 2000, Theorem 6.1). This set of func-
tions can approximate a general function of the form:

900 = g(x,x%,..). (5.15)

If knowledge is available that the data can be approximated by an addi-
tive form:

§(x) = g1(x") + g2(x?) + ... (5.16)
Then, instead of the product in (5.14), a sum can be used:
Ndim

filx) = Z% fi(xd). (5.17)
=

This yields a smaller set of functions for the approximation. If the data
can be approximated by this smaller set, a better approximation is found.



5.2. IMPLEMENTATION FOR THE TRIPOD 133

Combinations of (5.14) and (5.17) are possible (Cristianini and Shawe-
Taylor, 2000). Furthermore, also an ANOVA decomposition may be made
by the dual indicator functions (Stitson, Gammerman, Vapnik, Vovk,
Watkins, and Weston, 1997).

Because we assume to be ignorant of the relation underlying the
data, we use a kernel of the form (5.14) in our RKSM scheme. If the goal
of the experiments was solely to decrease the tracking error, different
kernels should be tried to see which one fits the data best.

Significance level of hypothesis testing

The significance level for rejecting the hypothesis by which a key sample
is included (3.53) and (4.55), is set at some fixed value. The actual value
of this significance is of no influence, because the noise estimate can be
used to alter the inclusion, see section 3.3.4 and 4.2.3. The noise estimate
is used as a design parameter and tuned throughout the experiments.

The omission scheme is not used, due to problems with the switch-
ing of the stacks at the interrupts in the real-time operating system.
When the omission scheme is not used, the set of key samples will con-
tain superfluous key samples. However, as seen in figure 4.5, the ap-
proximation remains good. The disadvantage is that the number of key
samples is greater than necessary and hence the computation effort is
(significantly) greater than needed.

Forgetting factor

The forgetting factor for the on-line approximation allows for a time
variant function to be approximated. The state-dependent effects of our
setup are not regarded time variant.

Although a small forgetting factor also decreases the possibility of
glitches as given in section 4.2.4, the multiplication of the weight ma-
trix with a constant does take calculation time. Therefore, in the experi-
ments, the forgetting mechanism is not used. If it is found that glitches
pose a problem to the performance, measures should be taken.

Structural regularisation

Structural regularisation is used in our experiments. Because we want
to allow for fast changes in the approximation, the value of the minimal
residual of the new information is set low. It is in the order of 10719,
which is 10° times larger than the numerical precision of the computer.
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Figure 5.9: First twenty seconds of a motor path

Slow start

In the beginning of the operation the setup can display some transient
behaviour, e.g. when the first reference sample is different from the first
measurement. The function approximator should not learn these tran-
sients. Therefore, in the off-line experiment, the first seconds are re-
moved from the data set.

In the on-line experiments, the learning feedforward controller starts
slightly later with the approximation of the data. Furthermore, the feed-
forward signal, i.e. the prediction of the function approximator, is mul-
tiplied with a scaling factor. This factor starts at zero and increases
smoothly to one in six seconds. The feedforward signal is smoothly
activated to avoid jumps and other stepwise excitations.

5.3 Off-line results

The off-line function approximator is tested first to see if the KSM can
be used in learning control. Because we are mainly interested in the on-
line applications, we only investigate the situations in which one motor
is allowed to move in the off-line experiment.

5.3.1 Motion profile

The motion that has been used for the training and for the evaluation,
was a concatenation of third order motions. This path was randomly
generated only once, so that evaluations can be performed on these
pseudo-random paths. The sequence contained no repetitions of the
commanded motions. The position commanded of motor number one
for the first twenty seconds is shown in figure 5.9. The stroke of the
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motor was set at 0.125 [m], which keeps the platform within its safe op-
eration region. The maximum speed was 0.3 [m/s| with a maximum
acceleration of about 4 [m/s?].

5.3.2 Approximate

The disturbance estimate and the delayed states obtained by the scheme
givenin figure 5.7 were used to approximate the state-dependent effects.
The function approximator first collected all the samples, and after the
training run, the relation was learnt.

The training run contained 200 000 samples. Out of these two data
sets were made: a training set of 7500 samples and a validation set of
7500 samples. The training set was used by the KSM to find a set of
key samples, while simultaneously the MSE on the validation set was
calculated. The KSM includes one key sample a time, and therefore a
whole set of approximators was made with different numbers of key
samples. The MSE of these approximators on the validation set is given
in figure 5.10. Above approximately 350 key samples, the MSE does not
significantly decrease. Therefore, an approximator with 350 key sam-
ples was used. The approximation was found in approximately 240 [s]
on a Pentium IV 2.4 GHz.

5.3.3 Evaluation

The approximation found was applied to the evaluation motion. The
last ten seconds are shown in figure 5.11. The RMS before learning was
183 [pm], while after learning, it was reduced to 22 [pm|. Based on this
observation, it may be concluded that the off-line function approxima-
tion is capable of learning a relation in a learning control setting with 3
inputs. With the approximation found by KSM, it is possible to reduce
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the tracking error significantly. For thorough investigation of the resid-
ual after learning, see section 5.4.1.

5.4 On-line results

In the experiments in which the approximator has to find the relation
on-line, each of the motors was supplied with its own reference motion.
Similar to the off-line experiment, these paths were a concatenation of
third order motions. The stroke, maximum velocity and maximum ac-
celeration were the same as before.

5.4.1 One moving motor

The first set of experiments was carried out with only one motor mov-
ing. Because there is no dynamic coupling if the other motors are sta-
tionary, only the position, velocity and acceleration of the moving motor
were fed to feedforward controller. The learning mechanism only had
to learn the characteristics of the motor.
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The tracking error of the motion with learning and without learning
is given in figure 5.12. The last twenty seconds of the experiment show
the improvement due to learning. The RMS of the tracking error in the
second half of the experiment without learning is 170 [pm], while after
learning the RMS has decreased to 18 [um]. It can be concluded that the
tracking error has decreased significantly, due to the phase-corrected
learning feedforward control with a RKSM learning mechanism. The
learning mechanism is capable of finding a relation in the data stream
with three inputs by which the effects of the motor characteristics are
compensated for.

The compensation of the cogging force can be observed at e.g. t ~
192 [s]. Before the learning, a periodic tracking error is seen here, while
after the training, this large tracking error does not show anymore. The
effect of friction has also diminished greatly. The effect of the friction be-
fore learning can be seen by the great errors with a non-zero mean. If the
direction of motion is turned around, a jump in this error is seen, e.g. at
t ~ 190 [s]. After learning, this effect disappears. A sudden acceleration
ate.g.t ~ 194 [s| gave a large tracking error before learning because the
required force to come to this acceleration was not fed forward. After
learning, this great error was compensated for.

The error found after learning is smaller than in the off-line exper-
iment, 18 against 22 [pum|. This difference can be explained because
in the on-line experiment the approximation was used to improve the
tracking behaviour during the experiment. Therefore the commanded
states were closer to the true states, and the approximation based on
the commanded states approximated the state-dependent effects better.
Furthermore, more data is processed by the on-line function approxima-
tor. It should be noted that the error before the learning was also slightly
larger in the off-line experiment, 183 against 170 [um].

Influence of noise estimate

The effect of the noise estimate on the number of key samples as well
as on the tracking error is shown in figure 5.13. As expected, the num-
ber of found key samples grows when the noise estimate is smaller. In
the corresponding tracking error, the RMS decreases until a certain level
and if the noise estimate is reduced further, it starts rising again. There
are two explanations for this behaviour. First, because the number of
key samples grows, the number of training samples for each key sam-
ple becomes less, and therefore, the target of the key sample is less cer-
tain. This results in a larger variance as regards the prediction, so that
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the low-pass filtered squared error

the state-dependent effects cannot be compensated for equally well any-
more. Second, the noise or residual vibrations are fitted. If the noise es-
timate becomes too small, random phenomena and residual vibrations
are fitted that do not contribute to a better prediction. These two factors
limit the precision with which the function can be approximated.

Convergence speed

In order to investigate the convergence speed, the squared error has
been filtered by a low-pass filter. The result is normalised between zero
and one and depicted in figure 5.14. Due to the slow start, the feedfor-
ward signal is fully active only after six seconds. This graph shows that
after approximately 25 seconds of learning the error does not decrease
significantly anymore. This means that with 25000 samples — which
are closely correlated because they describe a path — an approxima-
tion of the three dimensional state-dependent disturbances was found;
structure as well as parameters.
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Figure 5.15: The residual

Verification

Although the learning feedforward controller significantly reduced the
tracking error, there still was a residual. A zoom of this residual is given
in figure 5.15(a). Vibrations can be seen in the peaks of the Power Spec-
tral Density (PSD) plotted in figure 5.15(b). In this figure ‘a’ is located at a
peak between 40 and 55 [Hz], ‘b’ between 130 and 135 [Hz], ‘¢’ at a peak
between 160 and 170 [Hz| and ‘d” at a peak between 220 and 230 [Hz].

In the PSD plot, it can be seen that the power in the lower frequen-
cies of the signal has reduced significantly. The power in the frequency
range from 0 to 20 [Hz] is a factor 10 to 1000 smaller after learning.
Above approximately 25 [Hz], which happens to be the frequency where
the sensitivity function peaks, the power spectrum for the learnt and the
unlearnt method is equal.

Some of the vibrational modes that were found by exciting the plant
in rest, summarised in table 5.1, are again found in the PsD-plot. The
first peak, denoted: ‘a,” can be related to the vibrations around the hor-
izontal axes and the horizontal translational mode which are all about

Table 5.1: Characteristics of the Tripod

Vibrational modes Motor characteristics
Vert. axis 65 [Hz] Cogging amplitude (pp) 30 [N]
Hor. axes 40 [Hz] Cogging period 24 [mm]
Horizontal 40,145 [Hz] Coulomb friction 12 [N]
Vertical 225 [Hz] Mass 58 —-6.2 134
]

Dynamic coupling -1.1 [N/ms?
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40 [Hz]. The vertical vibration mode at circa 225 [Hz] is found as peak
‘d.” The vibration around the vertical axis of 65 [Hz] is not present in
the residual because it is hardly excited by the actuators. One of the
peaks ‘b’ or ‘¢’ is likely to be related to the other vertical mode. Because
these vibrations cannot be predicted with the states commanded used,
the LFFC-scheme cannot compensate for them. Therefore, the amplitude
of these peaks remains the same.

The amplitudes of these vibrations form a lower bound for the noise
estimate, therefore, they determine the maximum achievable perfor-
mance. If the noise estimate is estimated too small, then each top of
these vibrations is included as key sample, resulting in too many, incor-
rect, key samples. This further clarifies figure 5.13.

The power in the frequency range after approximately 25 [Hz] is not
altered by the learning control scheme. This 25 [Hz] is close to the peak-
ing of the (complementary) sensitivity function. Experiments in which
the bandwidth of the controller and that of the low-pass filters were
changed, showed that these had influence on the PSD of the tracking
error. It is recommended that in future research it is investigated why
the tracking error does not decrease for frequencies larger than 25 [Hz|.
However, due to limited time it could not be investigated further in this
research.

The contents of the function approximator is shown in figure 5.16. In
this figure only one input at a time is altered, and therefore effects that
depend on several states are not noticed. The mass is found to be 5.8 [kg]
by fitting a straight line in 5.16(c). The effects shown in figure 5.16 corre-
spond to the magnitude of the effects that were found in a set of prelim-
inary experiments. The motor characteristics that were extracted form
these experiments are summarised in table 5.1. These numbers were ob-
tained by the traditional LFFC scheme, with motion profiles especially
designed. For example, to measure the cogging force, a very slow mo-
tion is made; to measure the friction force, a wide variety of velocities
is presented and to measure the mass, a wide variety of accelerations is
commanded.

5.4.2 Two motors moving

In the next set of experiments two motors are moving. We are only
interested in the tracking error of motor number one. Motor number
two is merely used to act as a disturbance. The control scheme for mo-
tor number one contains the phase-corrected learning feedforward con-
troller as before. Motor number two however, is controlled (only) by a
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Figure 5.16: Identified state dependent effects

PD-controller.

Which inputs are of importance to construct the feedforward con-
troller is less obvious. The extra effect that is to be compensated for, is
the influence of the second motor. Although the dynamic coupling does
not exert big forces on motor number one, for big accelerations the forces
are clearly observable. Different inputs are considered for the learning
mechanism in this set of experiments. Three cases are considered:

Case 1) Only the position, velocity and acceleration of motor number
one are used as inputs. The dynamic coupling is disregarded. So,
X = (rX,lr v, ra,1)~

Case 2) Apart from the previous inputs, the acceleration of motor num-
ber two is added as input. This acceleration can largely predict
the coupling force from motor number two on motor number one:

X = (rx,ll Yvi,Ya1s ra,Z)-
Case 3) The commanded states of the moving motors are used. This

means that the position, velocity and acceleration of both motors
are used as inputs. With this set of inputs, all the effects should
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Figure 5.17: Two motors moving; tracking error for different inputs

be compensated for. However, some inputs might have a marginal
influence on the output of motor number one. The inputs are: x =

(rx,ll Tv1,%a,1,"x,2,1v,2, fa,z).

In figure 5.17(a) the tracking error, for the first case, of motor number
one is shown before and after learning. The tracking error is compara-
ble with the tracking error graph for only one moving motor. However,
significant peaks are found at several instances, e.g. at t ~ 198 [s]. This
peak is due to an acceleration of motor number two. Because the accel-
eration of motor number two is not an input in this case, the learning
mechanism has no means of prediction. Therefore, the peak remains
after learning.

In case 2, which adds the commanded acceleration of motor number
two as input to the feedforward controller of motor number one, this
error peak should lower. In figure 5.17(b) the tracking error of the last
five seconds is shown with and without this fourth input. It can be seen
clearly that the peak due to dynamic coupling is greatly diminished by
adding this input.

The initial high peak in the error, due to the dynamic coupling, is
compensated for by adding the acceleration of motor number two. How-
ever, residual vibrations remain after learning. This can be explained by
using a simple model of the plant, refer to figure 5.18. In this model,
the linear motor is denoted as m; F is the force acting directly on it; m;
represents the platform and Fg;g is the force applied, due to the accel-
eration of motor number two on the platform. The spring represents
the compliances in the system. LFFC calculates a force, F, based on the
states. In this figure, the Fg;; can be related to the acceleration of motor
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Figure 5.18: F can be used to compensate for effect of Fg;s, but not for
the vibrations due to the excitement of the system

two, and for argument’s sake, we assume that it is known.

LFFC calculates a force to compensate for the effect of Fy;q; based only
on Fgisi: F = f(Fgist)- This compensation force can compensate for the
initial, big error at the position x, but this disturbing force will also excite
the system and introduce vibrations. Because the compensation force
does not incorporate the dynamics, it cannot compensate for these vi-
brations. This would only be possible if the dynamics were included:
F = f(Fgist, t). This behaviour can also be seen at the Tripod; besides
the direct effect on the position of motor one, the acceleration of motor
two excites the system. The direct effect can be compensated for in the
current setting, but the resulting vibrations cannot.

The third case uses the commanded states of both motors as inputs
to the learning controller for motor number one: x = (ry1,7y1,7a1,x2,
7v2,7a2). The learning mechanism with these six inputs was capable of
compensating for the effects due to the coupling between the motors.
The results of the experiments with the different inputs, are given in
figure 5.19. The number of key samples and the RMS of the tracking
error are plotted as function of the noise estimate. The tracking error
without the learning component is 182 [pm]. It can be seen that adding
the commanded position and velocity of motor number two as input,
i.e. going from four to six inputs, does not further decrease the error.

Based on figure 5.19, we may conclude that the commanded states
of motor number one and the commanded acceleration of motor num-
ber two as input to the learning controller, give the best performance.
Relating this to the learning setting of figure 2.1(a):

X = (rx,lr rV,l/ ra,ll ra,Z) and Xu = (TXZI rV2>- (518)

The tracking error as well as the number of key samples is the small-
est for all the noise estimates if these four inputs are used. The best
achieved RMS of the tracing error is 25 [um] for a noise estimate of
0.75 [N]. For smaller noise estimates, the tracking error does not increase
significantly, but the number of key samples does.

In figure 5.20 the output of the function approximator is plotted for
the smallest MSE. As before, only one input alters in each plot, making
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it impossible to show state dependent effects that depend on several
inputs. Approximating the dynamic coupling by a straight line results
in a coupling of -1.5 [N/ms2|. The mass is approximated by 5.6 [kg].

Figure 5.21 shows the cogging force identified for one and two mo-
tors moving. Although the form is equivalent, there are differences be-
tween the effect identified. The reason of these differences is unknown,
but approximation errors might play a role.

5.4.3 All motors moving

In the last set of experiments, all three motors moved independently.
This set of experiments is similar to the previous set of experiments in
which two motors were moving, because, apart from the motor charac-
teristics, the dynamic coupling from the other motors had to be learnt
too. As before, we consider only the tracking error of motor number
one; the other motors are only used as disturbances and are therefore
only controlled by a PD-controller.

As was seen for two moving motors, the effect of the dynamic cou-
pling on the tracking error of motor number one, could be compensated
for reasonably if the commanded accelerations of the other motors were
added as inputs to the feedforward controller. Therefore, similar cases
are considered in this set of experiments:

Case 1) Only the position, velocity and acceleration of motor number
one are used as inputs. The dynamic coupling is neglected in this
experiment. Therefore: x = (rx1,7y1,%a1)-

Case 2) Apart from the previous inputs, the commanded accelerations
of both other motors are added as input: x = (ry1,7y1,7a1, %22, %a3)-

Case 3) All the commanded states are used. This means that the posi-
tion, velocity and acceleration of all motors are used as input; the
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number of inputs becomes 9: x = (rx1,7y1,¥a1,x2 T2, a2 I'x3s
1v,3, ra,3)-

The results are summarised in figure 5.22. The results are similar to
the results of the previous set of experiments: with only the three com-
manded states of motor number one, the dynamic coupling could not be
compensated for; if the commanded accelerations of both other motors
were included, the effect of the coupling on motor number one could
be compensated for, which attenuated the tracking error; adding more
inputs increased the tracking error again, because the extra inputs had
little to no predictive power and complicated the approximation. The
inputs needed for the compensation of the dynamic coupling and the
motor characteristics are:

X = (rX,lr v1,¥a1,"7a,2,%a,3 ); (519)
the inputs with (too) little predictive power are:

Xu = (Txpr Tvys Txzr Tvs)- (5.20)

5.5 Review

In chapter 3 and 4 function approximators were introduced that showed
good theoretical properties for learning control. In this chapter, these
off- and on-line function approximators are included as part of the learn-
ing feedforward controller. This learning control scheme significantly
reduced the tracking error for all the experiments on the Tripod. In the
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experiments, the function approximator was tested with 3, 4, 5, 6 and 9
inputs.

Phase-corrected learning feedforward control was introduced in the
beginning of this chapter as an improvement of traditional learning feed-
forward control. The phase-corrected variant corrects the phase lag,
when the feedback signal is used to learn the state-dependent effects.
This phase shift degenerates the learning accuracy and can even cause
instability. By means of an experiment, it becomes clear that the phase
corrected version of learning feedforward results in a smaller tracking
€ITor.

The phase-corrected LFFC was used as a control setting for an ex-
periment in which KSM was used as an off-line function approximator.
The KSM was capable of inferring the state-dependent effects from the
data, by which the tracking error decreased significantly. Before learn-
ing, the tracking error of the PD-controlled system was 184 [um], while
after learning the error decreased to 22 [pm]. It can safely be concluded
that the KSM is capable of learning state-dependent effects that depend
on three inputs.

The recursive version of KSM, RKSM, was used in the on-line phase-
corrected learning feedforward scheme as part of the feedforward con-
troller. Each millisecond a new sample was supplied to the learning
feedforward controller, which had to identify the state-dependent ef-
fects. The RKSM in the learning feedforward controller was tested for 3,
4,5, 6 and even 9 inputs: significant error reduction was realised for all
these tests.

Although a significant error reduction was realised in all the exper-
iments, several inputs had little predictive power. Including them un-
necessarily complicated the approximation, resulting in a larger track-
ing error.

The number of key samples that was needed for the error reduction
kept manageable. This kept the calculation time limited. The calcu-
lations of the update were, however, performed outside the real-time
loop, so that timing of the feedback controller was definitely correct.

Experiments for which the feedforward controller requires more than
two inputs, are of no use with the BSN function approximator used in
previous work. The number of B-splines becomes too large, and more
important, the generalisation becomes too bad due to the limited sup-
port of the B-splines. Therefore, not substantial error reduction would
result.

Tuning the function approximator is easy. Only one parameter has
to be tuned with a clear physical interpretation: the noise level. This
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gave a good approximation of the state-dependent effects, without the
need for many attempts to find the correct parameter settings.

Convergence of the learning controller was fast. In 25 seconds of
learning, the tracking error did not decrease significantly anymore.

The limitations of the learning control scheme were found to be due
to the flexibilities. These dynamic effects cannot be compensated for by
the current setup. If the control scheme is to be used in setups with
considerable flexibilities, it is recommended that it is investigated what
the influence of these vibrations are on the learning performance, and
whether it is recommended to compensate for them by a modified ver-
sion of LFFC.

Based on the experiments, it can be concluded that these function
approximators can be used in a learning control setting where multi-
dimensional approximations are required, and thus they solve the prob-
lem stated in chapter 1.



Six

Discussion

HE PURPOSE OF THIS RESEARCH was to find a function approxima-
T tor that could be used as part of the Learning FeedForward Con-
troller, and that was not as prone to the curse of dimensionality as the
B-spline network, used in previous work on LFFC. This purpose led to
the following problem definition:

Problem definition:

Find a function approximator that can be used in a learning
control setting.

In order to attain a function approximator that could be used in a learn-
ing control setting, a set of conditions was specified. As the function
approximator was needed in an on-line as well as in an off-line learning
control setting, not one, but two function approximators were searched
for. The first had to find a relation within the data when this data was
presented as a batch, while the second had to find a relation in the data
when the data was presented as an endless stream.

First we will review the individual chapters, based on which the con-
clusions are drawn. Recommendations for further research conclude
this thesis.

6.1 Review

Chapter 3, off-line function approximation

An off-line function approximator, called Key Sample Machine (KSM),
has been developed that represents the data by a subset of the data.
This approach is similar to the approach of the Support Vector Machine
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(SVM). Because the prediction is made based on similarities with train-
ing samples, the input space is not necessarily divided into regions, as
done by e.g. B-splines and the Radial Base Functions Network (RBFN),
and the KSM is therefore less prone to the curse of dimensionality. The
samples that are used to summarise the data are called key samples. The
interpolation between the key samples is brought about by a dual indi-
cator function, which is equal to the kernel function of the SVM. Because
of the freedom to choose a kernel function, the class of functions that can
be used for an approximation is not limited to one class, as is by RBFN
or the Multilayer Perceptron (MLP).

In contrast with SVM, which uses an e-insensitive cost function, a
quadratic cost function has been used for KsM. This does not inherently
result in a sparse solution. In Least Squares Support Vector Machines
(LssvM), which also uses a quadratic cost function, a sparse subset of
training samples for prediction is found, by successively removing those
samples from the training set that have little influence on the prediction.
This pruning scheme omits valuable information by removing training
samples. KSM uses a subset selection scheme to find the key samples that
summarise the data set. In this procedure, all the training data is used
to train the parameters accompanying each key sample. Because the
subset selection is now an explicit step in the approximation scheme,
a selection scheme that is appropriate for the problem on hand can be
used. In this thesis the forward selection scheme was used. This scheme
includes one key sample a time, until a good enough approximation is
found. The calculation time required remains small when the number
of key samples remains small.

A stopping criterion for the selection scheme has been introduced
that tests whether the inclusion of an extra key sample is statistically
relevant. Only if it is, the sample is included in the set of key samples to
predict for new inputs. Because of the statistical test, the accuracy of the
prediction is based on the quality and quantity of the data. As a result,
the fitting of noise is unlikely.

The noise variance of the Gaussian noise that corrupts the targets is
used to test whether the inclusion of an extra key sample is statistically
relevant. This noise variance is often unknown an should be estimated.
The noise estimate can also be interpret as a design parameter to trade
off few key samples and an accurate prediction.

Evaluation of KSM and comparison of KSM with other off-line meth-
ods, showed that KSM could handle high-dimensional input spaces and
that only a limited number of key samples are needed for a prediction.
In comparison with other support vector based methods, it is rather fast
and gives a smaller prediction error for noisy data.
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Chapter 4, on-line function approximation

A recursive version of KSM has been developed for on-line learning con-
trol. This recursive function approximator is called Recursive Key Sam-
ple Machine (RKSM) and is capable of updating its parameters on-line as
well as adapting its structure. The calculations necessary for each up-
date, are recursive. The update for the weights of the key samples due
to a new sample is exact. This means that there is no difference in the
weights calculated based on all the samples, or calculated by updat-
ing for each new sample. Removal of a key sample from the set of key
samples is also exact. However, the addition of a sample to the set of
key samples is not exact. This update cannot be made exact, because
the sample previous supplied would be required, and they are omitted.
Therefore, it is assumed that the new key sample is uncorrelated with
the current set of key samples. This is however, not true.

Evaluation of RKSM showed that it is capable of selecting a good set
of key samples from the continuous data stream. The mean squared
error (MSE) of the on-line version was nearly equal to the MSE of the off-
line version. This has been realised by including an omission scheme that
omits samples that have become superfluous. As the behaviour of the
on- and off-line approximators is nearly the same, the handling of high-
dimensional input spaces is also nearly equal. The on-line approximator
can handle high-dimensional input spaces just as well as the off-line
approximator.

Similar to KsM, the approximation is dependent on the quality of the
data. If the noise variance is low, the approximation is precise, but for
a large noise variance, the approximation is rough. If the noise level
is estimated foo low, the approximator starts fitting noise. The ridge
regression scheme is not capable of reducing this noisy approximation,
but by means of structural regularisation, the number of key samples can
be limited, which results in a smoother approximation. A disadvantage
of this regularisation scheme is that fast fluctuations can no longer be
approximated.

Time-variant functions do not pose a problem for RKSM, when a for-
getting mechanism is incorporated.

Chapter 5, experiments

The KSM as well as the RKSM have been used as a function approximator
in the learning feedforward controller. The use of KSM was tested in an
off-line setting because it required all the data in a batch, while RKSM
was tested in an on-line learning controller setting. The application on
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which the function approximators were tested was a Tripod. This is a
mechanical setup consisting of three coupled linear motors.

The phase-corrected learning feedforward control scheme was used.
The phase-corrected variant of Learning FeedForward Control (LFFC)
corrects the phase lag present in traditional LFFC.

The KSM was capable of learning the state dependent effects out of
the data, by which the tracking error decreased significantly. The effects
the KSM compensated for, depended on three variables.

The recursive version of KSM, updated its approximation at each
training sample that became available, i.e. each millisecond an update
was calculated. The RKSM in the learning feedforward controller was
tested for 3, 4, 5, 6 and even 9 inputs, by which it realised a significant
error reduction. Although a significant error reduction was realised for
all these inputs, several inputs had little predictive power. Including
them unnecessarily complicated the approximation, resulting in a larger
tracking error.

The use of the noise estimate to tune the accuracy of the function
approximator was found to be intuitive. Only one parameter has to be
tuned and this parameter has a clear physical interpretation. Good ap-
proximation of the state-dependent effects were found, without a large
number of attempts to find the correct parameter settings.

Convergence of the learning controller was fast. After 25 seconds of
learning, the tracking error did not decrease significantly anymore.

In the experiment, the limitations of the learning control scheme
were found to be due to the limited mechanical stiffness. These dynamic
effects could not be compensated for by the current setup.

6.2 Conclusions

The conclusions that can be drawn from this research concerning func-
tion approximators are:

¢ An on- and off-line function approximator have been constructed
that can be used in a learning control setting. This has been ex-
perimentally validated, and these function approximators therefore
comply with the problem definition.

¢ The sample-based approach is a useful approach to circumvent the
curse of dimensionality. Because the prediction is made based on
similarities with training samples, the input space is not necessarily
divided into regions. The number of key samples that is needed to
represent the data depends on the relation underlying the data. In
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order to get a good approximation, all the training data should be
used to train the parameters corresponding to the key samples.

The statistical test to decide whether a sample will become a key
sample, results in an accuracy of the approximation depending on
the quality of the data, and in the case of an off-line approximator,
it also depends on the quantity of the data. This makes the fitting of
the current noise realisation unlikely. The statistical test also results
in a design parameter intuitive in use: the noise level. With this
design parameter, a trade off can be made between the accuracy
and the number of key samples.

Assigning a weight to each key sample makes it possible to indi-
cate that a key sample represents a multitude of data. Using these
weights, new samples can be incorporated in an existing approxi-
mation without causing problems. Furthermore, these weights can
help to select which key sample can be removed.

For RKSM, the update of the approximation is not exact when the
structure of the approximation is extended. We have assumed, that
the new key sample is uncorrelated with the present key samples.
This assumption is generally not true, but is required because the
true correlation cannot be calculated due to the omission of previ-
ous samples.

Structural regularisation can be implemented by including a key
sample only if it differs enough from the current set of key sam-
ples. This form of regularisation limits the number of key samples
and so smoothens the approximation. A disadvantage is that fast
fluctuations cannot be approximated anymore.

A forgetting mechanism can be incorporated so that time-varying
functions can be approximated. The forgetting mechanism is also
useful to indicate that the structure, when only few samples are pro-
cessed, is a preliminary one, and is therefore not certain.

The computation time of both KSM and RKSM is limited. An approx-
imation was found within seconds if 2000 samples are supplied in
a batch to the key sample machine. The calculation time for the
on-line approximator was much smaller, because in the on-line ap-
proximator, the larger part of the calculations is spent on selecting
the best candidate key sample, and this is not done for the off-line
approximator.
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As to the learning feedforward controller, it can be concluded that:

o The phase corrected learning feedforward controller with the re-
cursive key sample machine as function approximator works good.
For all the experiments a significant tracking error reduction was
achieved.

e Phase correction for learning the state-dependent effects in a learn-
ing feedforward setting, increases the tracking performance.

¢ Learning feedforward control, as well as its phase-corrected variant,
are incapable of compensating for dynamic effects, e.g. vibrations,
of the plant. This limits the performance of the learning control
scheme. The dynamics also limit the accuracy of the approximation
of the state-dependent effects.

6.3 Recommendations for future work

The results found in this research may well be used in learning control.
However, there remain several issues that require (more) research:

¢ In the on-line function approximator an omission scheme was intro-
duced that removed the superfluous key samples. For the on-line
approximator this is of more importance because fewer key samples
imply less calculation time, which is restricted.

However, in the off-line case an omission scheme can also be
incorporated. This is expected to lead to fewer key samples for the
same accuracy. The step-wise indicator selection scheme of Miller
(1990) can be used to implement this.

¢ Inthis thesis the approximation was either made based on a batch of
data or on one sample a time. However, the approximation scheme
can be slightly altered so that any number of samples can be incor-
porated into an existing approximation. This can be useful, if the
data becomes available as a sequence of small batches. It could also
be used to supply the on-line function approximator with a priori
knowledge. This intermediate form can form the connection be-
tween the on- and off-line approximators.

The weights on the key samples are used to indicate that the
key samples represent a multitude of data. As a result the inclusion
of a sample in the approximation can be done appropriately. In
section 4.2.2 the approximation update is done for one sample, but
this can be done repeatedly to include more samples.
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The selection of a candidate sample that can become a key sam-
ple can be done in the same way as the selection in the off-line case
by finding the sample which corresponds most with the residual of
the new batch of data. If the new batch only contains one sample, and
is therefore equal to the on-line case, this selection of the candidate
is trivial.

Finally a test has to be done to see if this candidate sample should
become a key sample. Again, one can test if the corresponding pa-
rameter is likely to be zero.

In this thesis the selection of inputs to the approximator was not
explicitly considered. However, if the number of inputs increases,
it might be useful to incorporate the selection of the inputs in the
approximation problem. One might think, for instance, of princi-
ple component analysis or projection pursuit (Cao, Chua, Chong,
Lee, and Gu, 2003; Hall, 1989; Haykin, 1994). In the experiments
we found that inclusion of extra inputs with little predictive power
worsens the approximation and therefore an input selection scheme
can give an improvement.

The approximation scheme assumed that the output was contam-
inated with noise, but the input was not. However, because the
states commanded were used as input of the function approxima-
tor, instead of the actual states, the input also contained errors. The
total least squares method takes into account that the inputs are also
corrupted, e.g. (Bjorck, 1996). In Huffel and Vandewalle (1991) it is
shown that the prediction accuracy increases if total least squares is
used, which makes it worth investigating if this scheme can give a
tracking error reduction in learning feedforward control.

The results of the approximation in the experiments showed a non-
smooth approximation (figure 5.20). In section 4.2.2 the correlation
between the key samples was assumed to be non-existing. How-
ever, this correlation might be used to implement a form of spatial
filtering. With this filtering, the approximation might be smoothed.
Appendix C treats the existence of a real-valued indicator vector
accompanying the choice of the correlation and might be a starting
point for implementing spatial filtering.

For the construction of the learning filter L (5.3), the Tripod was
modelled as a moving mass, thus neglecting a part of the dynam-
ics. As a result, the vibrations in the error signal were supplied to
the learning mechanism as a state-dependent effect to be learnt. It
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is recommended to investigate how the vibrations, and other un-
modelled dynamics, influence the learning behaviour. Design of
a learning controller by means of an He, criterion can be consid-
ered (De Roover and Bosgra, 2000).

We assumed that the state-dependent effects acted on the input of
the plant and we could therefore compensate for them by applying
an opposite force to the input of the plant (figure 1.2(a)). If the loca-
tion where we act is different from the location that is disturbed, e.g.
the printer head in the introduction, then this assumption does no
longer hold. However, as long as the connection between the loca-
tions is stiff, with regard to the frequency by which the disturbance
needs to be compensated for, the current LFFC setup can be used. If
the LFFC can be extended so that the connection does not need to be
stiff, then the range of applications extends.

In figure (5.15) we saw that the tracking error did not decrease for
frequencies larger than 25 [Hz|. In a set of experiments it was found
that the bandwidth of the controller and of the low-pass filters had
influence on the error-reduction frequency range. It is interesting
to investigate why the tracking error did not decrease after 25 [Hz]
and with this insight try to increase the error-reduction frequency
range.



Appendix A

Optimisation

O PTIMISATION THEORY treated in this appendix is limited to the the-
ory used in this thesis. For more information concerning optimisa-
tion, refer, among others, to (Aoki, 1971; Boyd and Vandenberghe, 2004).

A.1 With equality constraints

A convex minimisation problem with equality constraints on a convex
set can be solved by use of Lagrange’s theory. First a Lagrangian func-
tion has to be defined (Cristianini and Shawe-Taylor, 2000, ch. 5):
Definition 3 (Lagrangian function) Given an optimisation problem with
objective function f(b), and equality constraints hj(b) = 0,i = 1,...,m,
we define the Lagrangian function as:

L(b,a) = f(b) + Y aihi(b), (A1)
i=1

where the coefficients a; are called the Lagrange multipliers.
With this Lagrangian function, we can find necessary and sufficient con-
ditions for the solution b* to be optimal.

Theorem 1 (Lagrange) A necessary condition for a normal point b* to be a
minimum of f(b) subject to h;(b) =0,i =1,...,m, with f,h; € C', is:

aﬁ(gb, 14 ) _ 0’ (A2a)
du
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for some values of a*. The above conditions are also sufficient provided that
L(b*,a*) is a convex function of b.

Least Squares Support Vector Machine

The solution of the optimisation problem as used by LSSVM can be found
with the above-given theory. The solution of LSSVM is closely related to
the dual least squares treated in section 3.1.2. The optimisation problem
for LSSVM is:

grl?or}e %eTe + %bTb (A.3)
such that
y—Xb—-byl—e=0, (A4)

in which 11is a column-vector containing 1’s. This optimisation problem
is only different from the dual least squares by not including the offset
term in the regularisation term, see (3.13). Furthermore, the offset term
is explicitly denoted in (A.4), while it is incorporated in X in (3.13).

A Lagrangian can be constructed for this optimisation problem:

L= %eTe+%bTbJrDLT(Y*Xb*le*e). (A.5)

Differentiation of the Lagrangian yields the conditions necessary for op-
timality:

% = Ab—-Xa=0, (A.6a)
% — WT1-0, (A.6b)
2 en=o (A60)
% = y—Xb—byl—e=0. (A.6d)

Elimination of b and e through substitution and rewriting this set of
equations in matrix form, results in:

0 1T b 0
==

1 T
1] IxxT+1
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In order to be compatible with the standard notation of LSSVM, we use
& = a«/A. This alters (A.7) to:

8-

The solution of LSSVM is equal to the solution of dual least squares
(3.19a). However, for LSSVM it simultaneously has to hold, that the sum
of the Lagrangian multipliers is zero.

0 1T
1| XXT+ A1

A.2  With inequality constraints

The Kuhn-Tucker theorem gives conditions for an optimal solution to a
general optimisation problem (Cristianini and Shawe-Taylor, 2000, ch. 5).

Theorem 2 (Kuhn-Tucker) Given an optimisation problem with convex do-
main Q) C R”,

minimise f(b), becQ,
subject to g;(b) <0, i=1,...,k (A.9)
hi(b) =0, i=1,...,m,

with f € C! convex and g; and h; affine, necessary and sufficient conditions
for a normal point b* to be an optimum are the existence of a*, B* such that

oL(b*,a*, B")

=R =0, (A.10a)
oL(b*,a*, B*)

=g = 0 (A.10b)
a;gi(b*) = 0, i=1,...k (A.10c)
gi(b*) <0, i=1,..,k (A.10d)
ay > 0, i=1,...,k (A.10e)

In this theorem, L is the generalised Lagrangian function:
L(b,a, ) = f(b) +a'g(b) + B'h(b), (A11)

while the conditions &} g;(b*) = 0,i = 1,.. .,k are known as the Karush-
Kuhn-Tucker (KKT) conditions. These conditions state that if a con-
straint is active, then the multiplier is equal or larger than zero, while
for inactive constraints the multiplier is equal to zero.
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Support Vector Machine

The support vector machine optimisation problem can be reformulated
with the above-given theory to a dual problem. Repeating the optimi-
sation problem of section 3.1:

N
minC Y (& +¢&)+ 3b'b (A.12)

rbO i=1

with the constraints:

f(x;))b+bo—y; < e+¢; (A.13a)
yi—f(x))b—by < e+¢;, (A.13b)
¢/ <0, (A.13c)
—Gi < 0. (A.13d)

This formulation is equal to the standard formulation and a generalised
Lagrangian can be formulated:

N
L=CY (&+&)+3b'Db
=1

o (y; — f(x)b —bp — € — })

+
1=

Il
—

Al

(A.14)
w;i(f(x)b + by —y;i —€ — ;)

~+
=N agk=

-, YiGi + 7 ¢

Il
—

In this equation, ocl(*) and '71'(*) are the Lagrangian multipliers that cor-

respond to the inequality constraints. This Lagrangian has to be min-
imised for the primal variables, while it has to be maximised for the
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Lagrangian multipliers. Differentiation of the Lagrangian results in:

oL

— =Y a—) af =0 =Y a=)a (Al5a)
dbo i i i i
oL . .
5 = b+ wf (i) =Y aif (x) =0 =b=) (af —a;)f (x;)
i i i
% :C—oci—'yi:O :>')q:C—oci (A.15¢)
G
ggﬁ* =C—aj—9; =0 =9 =C—af (A.15d)
i

The second of this set of equations relates the parameter vector with
the Lagrangian multipliers. Substitution of these relations into the La-
grangian yield the dual optimisation problem:

N N
max ) (af —w;)y; — €Y (af +a;)—
a1 i=1
y T
3 Y (af — ) (af —ap)f(x)E (x0). (A.l6)
ij=1

For a feasible solution, the following constraints need to hold:

0<a; <C, (A.17a)
0<al<C, (A.17b)

M=

Il
—_

(aj —aj) =0. (A.17¢)

1

At the optimal solution, the KKT conditions hold:

aj(f(xj))b+bo—yi—€e—¢&) =0, (A.18a)
i (yi — f(x;)b —bg — € — &}) 0, (A.18b)
gidi = 0, (A.18¢)
o7 =0, (A.18d)
(a; = C)gi =0, (A.18e)
(af = C)¢; = 0. (A.18f)

The optimal values of a(*) can be found by the algorithms described
in (Boyd and Vandenberghe, 2004; Keerthi et al., 2001) or the software
of (Chang and Lin, 2003) can be directly used.






Appendix B

Implementation

THE CALCULATIONS OF THE algorithms presented in this thesis can
be done recursively. This appendix treats an implementation for
the KsM and the RKSM.

B.1 Key Sample Machine

The complete algorithm for the KSM is given in algorithm 3.1 on page 59.
Implementation of this algorithm has not been treated, and in this sec-
tion an implementation of the algorithm by means of a QR decomposi-
tion is treated. Knowledge on decompositions and matrix properties is
assumed. For more information on these subjects, we refer to (Bjorck,
1996; Golub and Van Loan, 1996; Stewart, 1998, 2001).

First, it is treated how the OLS problem can be solved by means of
the QR decomposition, while second, the inclusion of a key sample is
treated. Other steps of the algorithm are readily implemented. The QR
decomposition is used for the calculations due to its numerical stabil-
ity (Bjorck, 1996; Stewart, 1998).

B.1.1 Background

The OLS problem as stated in section 3.1.1:
min [Xb —y|3, (B.1)

can be solved by means of theory from linear algebra with theorem 2.1
of Stewart (1998):
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Theorem 3 Let X be of full column rank and have a QR decomposition of the
form:

x=lox a5 (B2)

Then the solution of the least squares problem of minimising ||y — Xb|3 is
uniquely determined by the QR equation

Rb = Qyy = zx. (B.3)

The least squares approximation of y is given by

¥ = Xb = Pxy = QxQxy = Qxzx. (B.4)
The residual vector is given by
r=y-Xb=P,y=0Q,0ly=0Q,z, (B.5)

and the residual sum of squares is
I3 = llzL 113 (B.6)

Moreover, the residual at the minimum is orthogonal to the column space of X.
In this theorem, Py is the orthogonal projection on the space spanned
by the columns of X. It is interesting to note that Px = X(XTX)~1XT,
which relates the projection matrix to the prediction found by the nor-
mal equations.

In order to calculate zx, the following theorem can be used (Stewart,
1998, Theorem 2.2.):
Theorem 4 Let the QR factorisation of the matrix [X x| be partitioned in the
form

X« =l al[g - ®7
Then
pq =Pxx and r=Q'x. (B.8)

In terms of our least squares problem, this theorem states that for an
augmented indicator matrix: X, = [X y], the following holds:

X y]=1Q vkl [§ 2] (B9)

]l
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The parameter vector b is calculated by solving Rb = zx, while the
zx and R result from the QR decomposition of the augmented indicator
matrix.

The R matrix of the QR decomposition can be found by means of a
Cholesky decomposition, without the necessity to calculate the corre-
sponding Q. When X has a full column rank, then the Cholesky decom-
position of XX exists:

XTX = RE R (B.10)

in which R, is upper triangular. Substitution of the QR decomposition
for X in X' X yields:

X™X = RTQTQR = R'R. (B.11)

From which it follows that the Cholesky decomposition of XTX equals
the R of the QR decomposition of X, because both are upper triangu-
lar. The matrix Q is not needed in any of these calculations and can be
omitted to save memory space.

So, in order to solve the OLS problem, we first create an augmented
indicator matrix (B.9). By means of a Cholesky decomposition (B.10),
the vector zx and the matrix R are found. With these, the parameter
vector b can be calculated (B.3).

B.1.2 Inclusion of a key sample

When a key sample is added to the set of present key samples, the aug-
mented decomposition has to be refreshed. A similar approach as in
section 4.2.2 is used.

Before the inclusion of a new key sample, the augmented indicator
matrix and its product are given as:

Xa=[Xy] = XX.= Bf;;( ;ﬁﬂ : (B.12)
The corresponding augmented Cholesky decomposition is given as:

R, = {lg ;} ~ RIR, = [IETTII{{ rTfirpz} . (B.13)
Because XgXa = RgRa, the following holds before the inclusion:

RR = XTX, (B.14a)

RTr = XTy, (B.14b)

yly =rlr+4p% (B.14¢)
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The new key sample induces an indicator function, and the values
of this function for all the training samples are contained in the vector
x. Because of the inclusion of the key sample, the updated matrices are
partitioned as follows:

. ) R gt
Xa=[X xy|], Ra=|0 7 p (B.15)
0 0T
After the update, XIX, = RIR, still has to hold:
XX X'x X'y RTR RTg RTF
xX'X x'x xTy| = gT[_{ glg+9? gli+9p |. (B.16)
yTX yTx yTy IR i‘Tg + 70 FIE+ p_z + 12
Thus:
R'™R = X'X, (B.17a) glg + 2 = x'x, (B.17d)
R'g = X'x,  (B17b) g'li+yp = xly, (B.17)
Rt = X"y, (B170) i+ >+ = yly. (B.17f)

Which, in combination of the equalities in (B.14), give:

R = R, (B.18a) v = x"x—g'g, (B.18d)
g = R ™XTx, (B.18b) po= %(xTy—gTr), (B.18¢)
Po= (B.18¢) = yly—rlr—p% (B.18f)

By which the augmented decomposition of R,, (B.15), can be deter-
mined, and hence, the new value of b. For the recursive calculations,
X and R, need to be stored.

Interesting to see, is that by using R~TXT = QT, g of (B.18b) is the
projection of the new column x on the space spanned by the columns
of Q. An other observation is that in these equations, v is the norm of
the residual of the new indicator vector after projection on the present
indicators. If this value is too small, it is argued in section 4.2.4, that the
indicator should not be included due to a lack of information.

The norm of the residual before the update is given as p, while after
the update it becomes 7. Based on their difference, the statistical test
(3.53) can be performed.

In these calculations the matrix Q is not stored to save memory space.
The price to pay is an increase in the number of calculations to calculate
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Table B.1: Relation between matrices used for the RKSM algorithm and
implementation

matrix decomposition

R RTR = XTX = X V71X = X[ PTP~1Xq
Rys REsts = Xis

zx zx = Qyy

P PTP=V-!

the projection of a new vector (B.18b). It should be noted, that R is upper
triangular, so the calculations for g are not excessive. One might argue
that Q can be stored instead of X for these calculations. For the inclusion
of the new key sample this is true, however, to calculate which indica-
tor should be included next, line 2 and 5 of algorithm 3.1, the matrix
X is required. Further investigation on the trade off between storing Q
and the extra calculation time, might be worth investigating for future
implementations to improve the calculation time.

B.2 Recursive Key Sample Machine

For RKSM three update algorithms need to be implemented. These al-
gorithms are given in algorithm 4.1 on page 91. As with KSM, the QR
decomposition is used. The calculations for the implementation are all
performed on decompositions of the matrices used in the algorithm. Ta-
ble B.1 relates the decompositions with the matrices of the algorithm.
With R and zx the parameter vector b can be calculated as done for
KSM. The targets of the key samples, yy,, are not stored explicitly, be-
cause they are not required for prediction. If required, one can calculate
them by use of the parameter vector.

The weight matrix V~! can be updated whenever a new training
sample becomes available, or it can be calculated from X5 and X when
required. In approximation experiments, it was found that the time dif-
ference was not significant between these approaches. However, both
methods are treated.

B.2.1 Updating the key samples

The first situation considered is the adaption of the key samples due to
a newly supplied training sample. This update is treated in table 4.1(a).
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As the number of key samples does not alter, the matrix Rys does not
change; R, zx and P, however, do. The matrix R and zx are updated
simultaneously, and this is treated first.

The augmented indicator matrix is extended by a row due to the new
training sample.

X, =[X y] = Xo= [)f‘ ﬂ . (B.19)
In this, f is the indicator vector and y is the new target. The matrix X
and y are not kept in memory, but their decomposition and projection,
R and zx respectively, are. The alterations for these decompositions,
due to the new row in the augmented indicator matrix, are calculated
simultaneously. For this, R, zx, f and y are combined into a matrix:

[If{ Zﬂ , (B.20)

in which R is upper triangular. By means of e.g. (fast) Givens rotations,
this matrix can be reduced to the following form:

R z
[ 0 (ﬂ , (B.21)

in which R is again upper triangular. The algorithm to arrive at (B.21)
from (B.20) is described in detail in Golub and Van Loan (1996, chap-
ter 12) and Stewart (1998, chapter 4.3) and is therefore not treated here.
In the updated matrix, a bar above a matrix denotes the updated ver-
sion.

When (B.9) and (B.20) are compared, then it can be seen that r of (B.9)
is not present in (B.20). The matrix of (B.20) has the following partition-

ing:

X X X X|x

0 X X X|[|Xx

0 0 x x|x|, (B.22)
0 0 0 x|x

X X X x|x

in which x stands for a non-zero element. Because the norm of the resid-
ual is not included in this partitioned matrix, the last Givens rotation to
update the residual is not done. Therefore, ¢ is not the norm of the resid-
ual, but the part that should be incorporated to the residual norm, i.e.
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¢? is the change in summed squared error due to the new sample. This
change in error encompasses the prediction error of the new sample as
well as the change in error of the old samples due to the change in the
approximation.

Next to the decomposition of X, R is also the decomposition of weigh-
ted key samples: P~!X,. ¢? can therefore be interpreted as the weighted
change of the key samples plus the residual of the new sample. This is
the preferred interpretation, because of the assumption that the new key
sample is uncorrelated with the present key samples, assumption 4, one
is incapable of calculating the increase of summed squared error of all
the previous samples once a new key sample is added. The weighted
change of the key samples plus the residual can be used for the test in
(4.55).

The update of the weight matrix is calculated next. The update can
be calculated by:

XLl = f, (B.23a)

vl = vii4nT, (B.23b)

see algorithm 4.1(a). The calculation of 1 can be done with the decom-
position of Xyg:

Ria = fI, (B.24a)
Rl = a (B.24b)

As Ryq is upper triangular, the calculations are swift. With 1, the update
of the decomposition P~! due to (B.23b), is done by a Cholesky update
and can be found in literature on linear algebra, e.g. (Golub and Van
Loan, 1996; Stewart, 1998).

B.2.2 Adding a new key sample

The second update treated is the addition of a key sample into the set
of key samples. This update is given in algorithm 4.1(b). The indica-
tor matrix X is extended by a row and a column due to the inclusion of
a key sample, and the decomposition should be updated accordingly.
Although the update can be done by reasoning from the QR decomposi-
tion, the approach used, uses the Cholesky decomposition.

After the update the decomposition should still fulfill:

RIR, = Xi,,V 'Xisar (B.25)
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in which

< Xis 1
Xisa = { P b ﬂ (B.26)

denotes the augmented matrix containing the key sample indicator ma-
trix. R is asin (B.15), V! is the updated weight matrix. Because the
assumption that the new key sample is uncorrelated with the present
key samples, this matrix is extended with a row and a column and the
lower right element becomes 1. Substitution of the partitioned matrices
in (B.25) yields:

SEIG SR
f ¢y 0 1| f ¢ vy 00 1

which gives, after multiplication:

]|
| I
H
1
oo R
o= M
L]

ol, (B27)
T

XE VX + £1f XLV T+ £Tp X[ Voly + £y
VX +¢of VT +¢2  fVly oy
VIV X +yf yIV I ot yTVly 442
R'™R  RTg RTF
g'R g'g+7” glttp ] . (B28)
'R tlg+qp #E+p%+72

This gives all the necessary equations for the update. However, it is
possible to first use the training sample to fine tune the key samples, and
second, include the extra key sample. This is advantageous, because the
¢2, found with the fine tuning of the key samples, can be used to test
whether the sample needs to be included for a key sample; the inclusion
of the information needs to be done in both situations.
To show that first the row can be added and then the column, we

show the update without the extra column.

= 1T g -

1; f} [R 1 . (B29a)

T _
st y \4 ! 0 st y —
f y 0 1] f vy 0 p
Xg VX + £1f XE Vly + £y [RT? R's
VIV X +yf yTVly 442 'R 74 p?

} . (B.29b)

It can be seen that calculation of R and f are the same in (B.28) and
(B.29), and therefore the fine tuning of the key sample can be done first.
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f equals the updated zx. The remaining parts of the new decomposition
can be calculated as:

Rlg = XLV T+ g, (B.30a)

v = VT 2 glg (B.30b)

-1 -1 T

o= (fv y+oy—g r). (B.30¢)
P! is trivially updated as:

51 P10

pl= { 0 J. (B.31)

As the key samples alter, the decomposition Ry has to be updated
too. With the help of theorem 4 this can be readily done. The situation
before the update is:

Ry Ry = Xis, (B.32)
while after the update
T
Rks r Rks r o st fT
[ 0 P] { 0 pf Lf ¢ (B-3%2)
R R, Rlr Xis T
ks™ ks ks _ [ ks ] (B.33b)
T T 2 f :
'Ry rlr+p ¢

has to hold. So, the Ry4 does not change, r = R;STfT, while p? = ¢ —r'r.
p can be used to test if the new key sample contains enough information.

B.2.3 Removing a key sample

The last update is the omission of a key sample and is given in algo-
rithm 4.1(c). The implementation for the omission of a key sample con-
sists of two steps:

1) Move the induced vector corresponding to the key sample to the
right-most position of the indicator matrix.

2) Remove this column from the matrix.

The change in the decomposition due to the switching of columns in
the indicator matrix can be calculated by partitioning the augmented
decomposition matrix:

R.=[Ri p Ry|zx]. (B.34)
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In this, p is the column corresponding to the column in the indicator
matrix that is omitted. The columns of R, are changed to:

[Rl R, P | Zx] . (335)

By means of Givens rotations, the left part can be made upper triangular,
which is the updated decomposition:

R, = [Rl R, P ‘ Zx] . (B.36)

Details concerning the changing of the columns in the decomposition
are again found in (Golub and Van Loan, 1996; Stewart, 1998).

The last element of zx shows the (weighted) error increase due to
the removal of this indicator. If this error is larger than specified in the
removal criterion, see section 4.2.3, the omission should not be done.

The removal of the last column of the indicator matrix form the de-
composition is readily implemented. This column can just be omitted
from the decomposition.

The update of the decomposition of V~! contains the same two steps
as for the update of R. The changing of the location of the columns is
first performed, while after this, the column and row can be removed.
From algorithm 4.1(c) it is found that the matrix V! is altered by the
omission of the last row/column. This change needs to be done for the
decomposition too. Before the update, the matrix V~! is partitioned as:

_ w1l v
v!l= { T u—l]‘ (B.37)

The last row and column are removed due to the omission of the key
sample, and the updated weight matrix becomes:

AARER TARER VAR LS e B (B.38)
The following two vectors are constructed:

a = l+1v, (B.39a)

b = l1-1v. (B.39b)
With these, (B.38) alters to:

V'i=w'ltaa —bb"+1v 1" (B.40)

In order to update the Cholesky decomposition P! of V™1, two rank 1
Cholesky updates are required, and one rank 1 downdate. These updates
are available in the literature.
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B.2.4 Calculation of the weight

In the previous sections, the updates for the decomposition of the weight
were treated. The weight matrix, or its decomposition, can also be cal-
culated from Ry, and R. The weight is determined as follows (4.19):

-1 ~TyTyy—1
VT =X XXX (B.41)
Using the decompositions of table B.1:
-1 TR-TRTRR-TRT
V7 =R R R RRR,. (B.42)
This can be calculated by:

P IRRL, = R, (B.43a)
v! = pTpL. (B.43b)






Appendix C

Conditions on new weight matrix

OR THE INCLUSION of a new key sample an assumption is required
F concerning the correlation between the key samples, because the
actual correlation cannot be calculated due to the omission of the old
samples. In section 4.2.2 it was shown that the following matrix equality
has to hold after the addition of a key sample:

X z]'[X z]  [Xe 117V V1] [X f7 -

R e A €D
As z is the vector with the values of the new indicator vector with all
the training samples, this vector cannot be calculated. This results in
the unknown vector v that indicates the correlation between the key
samples.

As the actual correlation between the key samples cannot be deter-
mined, we can use the vector v to impose a correlation between the key
samples. This might be used to implement some kind of spatial filter-
ing. It should be known however, whether the selected v gives rise to a
real-valued vector z. Throughout this thesis, v was set at 0. It is shown
in this appendix that this choice always result in a real-valued vector z.

Equating the elements of the matrices of (4.41), yield the following
three matrix equations:

XX+ f1f = XLV Xy + v X + XL ve + £, (C.2a)
X'z+¢ = XLV + £V + X v+ £, (C.2b)
2'z+¢* = VUL L ovIfl  fvgp + 9% (C.2¢)

175
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The last two of these equations yield:

X'z = X'V HT + v+ X[ v = b, (C.3a)
z'z = VT fopvifl = (C.3b)

In which the right-hand side of these equations are known. The first
matrix equation consists of N linear equations with k unknowns, k < N.
As a result, z is not uniquely determined by this set of equations, and
an (N — k)-dimensional null-space exists. This null-space can be used
to fulfil (C.3b). If a solution to the second equation exists, then there is
a possible real-valued vector z. This solution is found by means of a QR
decomposition. Starting from:

X'z = b, (C4a)
z'z = c. (C.4b)

We can use the QR decomposition of X:

——l <
QT
XT = [RT 0] lQﬂ . (C.6)

In this, Qx spans the same space as the matrix X and Q, spans the
null-space of X. The matrix R can be calculated from the Cholesky de-
composition of X[, V~!X, and is therefore known. Defining the vector:

s _ AT, _ |Qxz| _ |21
2=Q'z= [QLZ} = {22] . (C.7)
The size of 24 is k while Z; is N — k. Now we can solve:

Xz = b, (C.8)
[OT

[RT 0] Q%‘]z = b, (C.9)
Q1
-QTz

RT o] | =X7| = b, C.10

RY 0] o1, (C.10)

[RT o] ;ﬂ = b, (C.11)

RT2, = b. (C.12)
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So, the partial solution is given in terms of 2 and 2, is free. With this
the second equation can be fulfilled. Note that:

2'z = 2'Q'Qz = 272 = 212, + 213, (C.13)

Three situations can occur:

1) i{il > ¢. 2 has to be complex. This means that for the chosen
value of v, no real indicator vector can be found that represents this
weight.

2) i?il = c. In this case there is a unique solution z; = 0. There is one
solution for z.

3) i?il < c. In this case the vector 2, and therefore z, are not uniquely
defined. However, there are solutions to the problem which means
that the weight does represent some set of possible values for the
indicators, but these are not uniquely defined

The sample that fulfils the condition is indicated as an ‘imaginary sam-
ple.” This sample might never be presented to the approximator, or even
equals an indicator vector that a normal training sample can induce.

Throughout the thesis, we assumed that the key sample newly in-
cluded was uncorrelated with the already present key samples, i.e. v =
0. We want to calculated if the choice of v = 0 always results in a real
indicator vector. Inserting v = 0 in (C.3) gives:

Xz = X TV T, (C.14a)
z'z = VT (C.14b)

Using (C.12) gives:
Rz = X[,V . (C.15)

Fulfilling the second condition:

2'z = 2]2,+ 212, (C.16a)
= fV IX ROIRTIXL VT +2]2), (C.16b)
=V IX (XTX)XL VT 4 2]2,, (C.16¢)
=V IX (XEV X ) XE VT 4273, (C.16d)
= VX X VXX VT + 22, (C.16e)

= V1 +2l3,, (C.16f)
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requires that 2, = 0. Therefore, there is always a unique solution if the
correlations are set to zero.

Example C.1 (Imaginary sample)

An example might give some insight. The dual indicator function that is used is
k(x,x;) = 1+ min(x, x;). The training data and the key samples as well as the
corresponding indicator matrices are given as:

11

(xy)i= Xis = [1 4}. (C.17)

WNN-R, OO
N o1t W N =
N
—
=
a
w
—
|
| ——

w o
—_

X
Il
e e e
B W N ==

The resulting weight matrix can be calculated from these:

v-l— {2.56 0.44}  R= {2.23 4.92}.

0.44 1.56 0 261 (C.18)

A new sample is introduced (x,y) = (1.5,4). This sample is added to the set of
present key samples. With the given kernel function the resulting indicator vec-
tor becomes f = [1 2.5]. The innerproduct in the feature space of this sample
with itself is ¢ = k(1.5,1.5) = 2.5. With these variables, the value of 2; can be
calculated (C.12):

T T v—1,T 8

Xz = XLv i =b= [21], (C.19)
. o1 [3577

21 = RTb= {1.304}. (C.20)

The second condition (C.3b) states that zTz = fV—1fT:

VT = 145, (C.21)
212, = 145 (C22)
From which it follows that 2, equals zero and the solution for z is unique.

Because we know X in this example, we can calculate z. This is normally
impossible.

1 -1.2 1
1 -1.2 1
3.577
Qz = |L[1]-L |02 { ] = [15]. (C.23)
V5 1 V6.8 0.8 1.3038 5
1 1.8 25

This indicator vector cannot be induced by a training sample with the old train-
ing samples. The values for this indicator vector with the old training samples
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are:

[y

Zyrue = | 2 | - (C.24)
2.5
2.5

Next to the update of the weight matrix, the target for the new key
sample has to be given a value. The new value can be chosen freely.
Before the update the following holds:

Xy = XL,V ly. (C.25)

while after the update the following has to hold:

T -
X z] [yl  [Xes f] [V v] [y
ol BTl Sl 20
Setting the left-hand side equal to the right-hand side results in the fol-
lowing two equation for v = 0:

X'y +£1y = XV lyis + £, (C27a)
'y + oy = £V lyg+ du. (C.27b)

The first of these equations gives y = ;. If we take an arbitrary value
for vy, this will give a possible situation for the full data with real values
of y. This is because the product of z'y can be set to any value required
so (C.27b) can always be fulfilled. The new ;4 can therefore be chosen
freely.
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